Upload 276 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- configs/model/codi_2.yaml +21 -0
- configs/model/openai_unet.yaml +3 -1
- configs/model/openai_unet_2.yaml +87 -0
- configs/model/optimus.yaml +3 -4
- configs/model/prova.yaml +1 -1
- core/__pycache__/cfg_helper.cpython-311.pyc +0 -0
- core/__pycache__/cfg_helper.cpython-38.pyc +0 -0
- core/__pycache__/cfg_holder.cpython-311.pyc +0 -0
- core/__pycache__/cfg_holder.cpython-38.pyc +0 -0
- core/__pycache__/sync.cpython-311.pyc +0 -0
- core/__pycache__/sync.cpython-38.pyc +0 -0
- core/common/__pycache__/utils.cpython-311.pyc +0 -0
- core/common/__pycache__/utils.cpython-38.pyc +0 -0
- core/common/utils.py +0 -3
- core/models/__pycache__/__init__.cpython-311.pyc +0 -0
- core/models/__pycache__/codi.cpython-311.pyc +0 -0
- core/models/__pycache__/codi_2.cpython-311.pyc +0 -0
- core/models/__pycache__/dani_model.cpython-311.pyc +0 -0
- core/models/__pycache__/ema.cpython-311.pyc +0 -0
- core/models/__pycache__/ema.cpython-38.pyc +0 -0
- core/models/__pycache__/model_module_infer.cpython-311.pyc +0 -0
- core/models/__pycache__/model_module_infer.cpython-38.pyc +0 -0
- core/models/__pycache__/sd.cpython-311.pyc +0 -0
- core/models/__pycache__/sd.cpython-38.pyc +0 -0
- core/models/codi.py +5 -4
- core/models/codi_2.py +226 -221
- core/models/common/__pycache__/get_model.cpython-311.pyc +0 -0
- core/models/common/__pycache__/get_model.cpython-38.pyc +0 -0
- core/models/common/__pycache__/get_optimizer.cpython-311.pyc +0 -0
- core/models/common/__pycache__/get_optimizer.cpython-38.pyc +0 -0
- core/models/common/__pycache__/get_scheduler.cpython-311.pyc +0 -0
- core/models/common/__pycache__/get_scheduler.cpython-38.pyc +0 -0
- core/models/common/__pycache__/utils.cpython-311.pyc +0 -0
- core/models/common/__pycache__/utils.cpython-38.pyc +0 -0
- core/models/dani_model.py +3 -1
- core/models/ddim/__pycache__/ddim.cpython-311.pyc +0 -0
- core/models/ddim/__pycache__/ddim.cpython-38.pyc +0 -0
- core/models/ddim/__pycache__/ddim_vd.cpython-311.pyc +0 -0
- core/models/ddim/__pycache__/ddim_vd.cpython-38.pyc +0 -0
- core/models/ddim/__pycache__/diffusion_utils.cpython-311.pyc +0 -0
- core/models/ddim/__pycache__/diffusion_utils.cpython-38.pyc +0 -0
- core/models/ddim/ddim.py +10 -1
- core/models/ddim/ddim_vd.py +1 -1
- core/models/encoders/__pycache__/clap.cpython-311.pyc +0 -0
- core/models/encoders/__pycache__/clip.cpython-311.pyc +0 -0
- core/models/encoders/__pycache__/clip.cpython-38.pyc +0 -0
- core/models/encoders/clap_modules/__pycache__/__init__.cpython-311.pyc +0 -0
- core/models/encoders/clap_modules/open_clip/__pycache__/__init__.cpython-311.pyc +0 -0
- core/models/encoders/clap_modules/open_clip/__pycache__/factory.cpython-311.pyc +0 -0
- core/models/encoders/clap_modules/open_clip/__pycache__/feature_fusion.cpython-311.pyc +0 -0
configs/model/codi_2.yaml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
########
|
2 |
+
# CoDi #
|
3 |
+
########
|
4 |
+
|
5 |
+
codi_2:
|
6 |
+
type: codi_2
|
7 |
+
symbol: codi_2
|
8 |
+
find_unused_parameters: true
|
9 |
+
args:
|
10 |
+
autokl_cfg: MODEL(sd_autoencoder)
|
11 |
+
optimus_cfg: MODEL(optimus_vae)
|
12 |
+
clip_cfg: MODEL(clip_frozen)
|
13 |
+
unet_config: MODEL(openai_unet_codi_2)
|
14 |
+
beta_linear_start: 0.00085
|
15 |
+
beta_linear_end: 0.012
|
16 |
+
timesteps: 1000
|
17 |
+
vision_scale_factor: 0.18215
|
18 |
+
text_scale_factor: 4.3108
|
19 |
+
audio_scale_factor: 0.9228
|
20 |
+
use_ema: false
|
21 |
+
parameterization : "eps"
|
configs/model/openai_unet.yaml
CHANGED
@@ -82,4 +82,6 @@ openai_unet_codi:
|
|
82 |
unet_image_cfg: MODEL(openai_unet_2d)
|
83 |
unet_text_cfg: MODEL(openai_unet_0dmd)
|
84 |
unet_audio_cfg: MODEL(openai_unet_2d_audio)
|
85 |
-
model_type: ['video', 'image'
|
|
|
|
|
|
82 |
unet_image_cfg: MODEL(openai_unet_2d)
|
83 |
unet_text_cfg: MODEL(openai_unet_0dmd)
|
84 |
unet_audio_cfg: MODEL(openai_unet_2d_audio)
|
85 |
+
# model_type: ['video', 'image']
|
86 |
+
# model_type: ['text']
|
87 |
+
model_type: ['audio', 'image', 'video', 'text']
|
configs/model/openai_unet_2.yaml
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai_unet_sd:
|
2 |
+
type: openai_unet
|
3 |
+
args:
|
4 |
+
image_size: null # no use
|
5 |
+
in_channels: 4
|
6 |
+
out_channels: 4
|
7 |
+
model_channels: 320
|
8 |
+
attention_resolutions: [ 4, 2, 1 ]
|
9 |
+
num_res_blocks: [ 2, 2, 2, 2 ]
|
10 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
11 |
+
num_heads: 8
|
12 |
+
use_spatial_transformer: True
|
13 |
+
transformer_depth: 1
|
14 |
+
context_dim: 768
|
15 |
+
use_checkpoint: True
|
16 |
+
legacy: False
|
17 |
+
|
18 |
+
openai_unet_dual_context:
|
19 |
+
super_cfg: openai_unet_sd
|
20 |
+
type: openai_unet_dual_context
|
21 |
+
|
22 |
+
########################
|
23 |
+
# Code cleaned version #
|
24 |
+
########################
|
25 |
+
|
26 |
+
openai_unet_2d_audio:
|
27 |
+
type: openai_unet_2d
|
28 |
+
args:
|
29 |
+
input_channels: 8
|
30 |
+
model_channels: 192
|
31 |
+
output_channels: 8
|
32 |
+
num_noattn_blocks: [ 2, 2, 2, 2 ]
|
33 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
34 |
+
with_attn: [true, true, true, false]
|
35 |
+
channel_mult_connector: [1, 2, 4]
|
36 |
+
num_noattn_blocks_connector: [1, 1, 1]
|
37 |
+
with_connector: [True, True, True, False]
|
38 |
+
connector_output_channel: 1280
|
39 |
+
num_heads: 8
|
40 |
+
context_dim: 768
|
41 |
+
use_checkpoint: False
|
42 |
+
|
43 |
+
openai_unet_2d:
|
44 |
+
type: openai_unet_2d
|
45 |
+
args:
|
46 |
+
input_channels: 4
|
47 |
+
model_channels: 320
|
48 |
+
output_channels: 4
|
49 |
+
num_noattn_blocks: [ 2, 2, 2, 2 ]
|
50 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
51 |
+
with_attn: [true, true, true, false]
|
52 |
+
channel_mult_connector: [1, 2, 4]
|
53 |
+
num_noattn_blocks_connector: [1, 1, 1]
|
54 |
+
with_connector: [True, True, True, False]
|
55 |
+
connector_output_channel: 1280
|
56 |
+
num_heads: 8
|
57 |
+
context_dim: 768
|
58 |
+
use_checkpoint: True
|
59 |
+
use_video_architecture: True
|
60 |
+
|
61 |
+
openai_unet_0dmd:
|
62 |
+
type: openai_unet_0dmd
|
63 |
+
args:
|
64 |
+
input_channels: 768
|
65 |
+
model_channels: 320
|
66 |
+
output_channels: 768
|
67 |
+
num_noattn_blocks: [ 2, 2, 2, 2 ]
|
68 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
69 |
+
second_dim: [ 4, 4, 4, 4 ]
|
70 |
+
with_attn: [true, true, true, false]
|
71 |
+
num_noattn_blocks_connector: [1, 1, 1]
|
72 |
+
second_dim_connector: [4, 4, 4]
|
73 |
+
with_connector: [True, True, True, False]
|
74 |
+
connector_output_channel: 1280
|
75 |
+
num_heads: 8
|
76 |
+
context_dim: 768
|
77 |
+
use_checkpoint: True
|
78 |
+
|
79 |
+
openai_unet_codi_2:
|
80 |
+
type: openai_unet_codi_2
|
81 |
+
args:
|
82 |
+
unet_frontal_cfg: MODEL(openai_unet_2d)
|
83 |
+
unet_lateral_cfg: MODEL(openai_unet_2d)
|
84 |
+
unet_text_cfg: MODEL(openai_unet_0dmd)
|
85 |
+
# model_type: ['lateral', 'text']
|
86 |
+
# model_type: ['text']
|
87 |
+
model_type: ['frontal', 'lateral', 'text']
|
configs/model/optimus.yaml
CHANGED
@@ -100,8 +100,7 @@ optimus_vae:
|
|
100 |
tokenizer_decoder: MODEL(optimus_gpt2_tokenizer)
|
101 |
args:
|
102 |
latent_size: 768
|
103 |
-
beta: 1.0
|
104 |
-
fb_mode: 0
|
105 |
-
length_weighted_loss: false
|
106 |
dim_target_kl : 3.0
|
107 |
-
|
|
|
100 |
tokenizer_decoder: MODEL(optimus_gpt2_tokenizer)
|
101 |
args:
|
102 |
latent_size: 768
|
103 |
+
beta : 1.0
|
104 |
+
fb_mode : 0
|
105 |
+
length_weighted_loss : false
|
106 |
dim_target_kl : 3.0
|
|
configs/model/prova.yaml
CHANGED
@@ -82,4 +82,4 @@ prova:
|
|
82 |
unet_frontal_cfg: MODEL(openai_unet_2d)
|
83 |
unet_lateral_cfg: MODEL(openai_unet_2d)
|
84 |
unet_text_cfg: MODEL(openai_unet_0dmd)
|
85 |
-
model_type: ['text']
|
|
|
82 |
unet_frontal_cfg: MODEL(openai_unet_2d)
|
83 |
unet_lateral_cfg: MODEL(openai_unet_2d)
|
84 |
unet_text_cfg: MODEL(openai_unet_0dmd)
|
85 |
+
model_type: ['frontal', 'lateral', 'text']
|
core/__pycache__/cfg_helper.cpython-311.pyc
ADDED
Binary file (31.2 kB). View file
|
|
core/__pycache__/cfg_helper.cpython-38.pyc
CHANGED
Binary files a/core/__pycache__/cfg_helper.cpython-38.pyc and b/core/__pycache__/cfg_helper.cpython-38.pyc differ
|
|
core/__pycache__/cfg_holder.cpython-311.pyc
ADDED
Binary file (1.7 kB). View file
|
|
core/__pycache__/cfg_holder.cpython-38.pyc
CHANGED
Binary files a/core/__pycache__/cfg_holder.cpython-38.pyc and b/core/__pycache__/cfg_holder.cpython-38.pyc differ
|
|
core/__pycache__/sync.cpython-311.pyc
ADDED
Binary file (11.8 kB). View file
|
|
core/__pycache__/sync.cpython-38.pyc
CHANGED
Binary files a/core/__pycache__/sync.cpython-38.pyc and b/core/__pycache__/sync.cpython-38.pyc differ
|
|
core/common/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (23.2 kB). View file
|
|
core/common/__pycache__/utils.cpython-38.pyc
CHANGED
Binary files a/core/common/__pycache__/utils.cpython-38.pyc and b/core/common/__pycache__/utils.cpython-38.pyc differ
|
|
core/common/utils.py
CHANGED
@@ -99,7 +99,6 @@ def remove_duplicate_word(tx):
|
|
99 |
|
100 |
|
101 |
def regularize_image(x, image_size=512):
|
102 |
-
BICUBIC = T.InterpolationMode.BICUBIC
|
103 |
if isinstance(x, str):
|
104 |
x = Image.open(x)
|
105 |
size = min(x.size)
|
@@ -111,7 +110,6 @@ def regularize_image(x, image_size=512):
|
|
111 |
size = min(x.size)
|
112 |
elif isinstance(x, torch.Tensor):
|
113 |
# normalize to [0, 1]
|
114 |
-
x = x/255.0
|
115 |
size = min(x.size()[1:])
|
116 |
else:
|
117 |
assert False, 'Unknown image type'
|
@@ -126,7 +124,6 @@ def regularize_image(x, image_size=512):
|
|
126 |
T.ToTensor(),
|
127 |
])
|
128 |
x = transforms(x)
|
129 |
-
|
130 |
assert (x.shape[1] == image_size) & (x.shape[2] == image_size), \
|
131 |
'Wrong image size'
|
132 |
"""
|
|
|
99 |
|
100 |
|
101 |
def regularize_image(x, image_size=512):
|
|
|
102 |
if isinstance(x, str):
|
103 |
x = Image.open(x)
|
104 |
size = min(x.size)
|
|
|
110 |
size = min(x.size)
|
111 |
elif isinstance(x, torch.Tensor):
|
112 |
# normalize to [0, 1]
|
|
|
113 |
size = min(x.size()[1:])
|
114 |
else:
|
115 |
assert False, 'Unknown image type'
|
|
|
124 |
T.ToTensor(),
|
125 |
])
|
126 |
x = transforms(x)
|
|
|
127 |
assert (x.shape[1] == image_size) & (x.shape[2] == image_size), \
|
128 |
'Wrong image size'
|
129 |
"""
|
core/models/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (466 Bytes). View file
|
|
core/models/__pycache__/codi.cpython-311.pyc
ADDED
Binary file (15.4 kB). View file
|
|
core/models/__pycache__/codi_2.cpython-311.pyc
ADDED
Binary file (14.4 kB). View file
|
|
core/models/__pycache__/dani_model.cpython-311.pyc
ADDED
Binary file (8.96 kB). View file
|
|
core/models/__pycache__/ema.cpython-311.pyc
ADDED
Binary file (5.51 kB). View file
|
|
core/models/__pycache__/ema.cpython-38.pyc
CHANGED
Binary files a/core/models/__pycache__/ema.cpython-38.pyc and b/core/models/__pycache__/ema.cpython-38.pyc differ
|
|
core/models/__pycache__/model_module_infer.cpython-311.pyc
ADDED
Binary file (9.05 kB). View file
|
|
core/models/__pycache__/model_module_infer.cpython-38.pyc
CHANGED
Binary files a/core/models/__pycache__/model_module_infer.cpython-38.pyc and b/core/models/__pycache__/model_module_infer.cpython-38.pyc differ
|
|
core/models/__pycache__/sd.cpython-311.pyc
ADDED
Binary file (19.7 kB). View file
|
|
core/models/__pycache__/sd.cpython-38.pyc
CHANGED
Binary files a/core/models/__pycache__/sd.cpython-38.pyc and b/core/models/__pycache__/sd.cpython-38.pyc differ
|
|
core/models/codi.py
CHANGED
@@ -75,16 +75,16 @@ class CoDi(DDPM):
|
|
75 |
@torch.no_grad()
|
76 |
def optimus_encode(self, text):
|
77 |
if isinstance(text, List):
|
78 |
-
|
79 |
-
token = [tokenizer.tokenize(sentence.lower()) for sentence in text]
|
80 |
token_id = []
|
81 |
for tokeni in token:
|
82 |
-
token_sentence = [
|
83 |
-
token_sentence =
|
84 |
token_id.append(torch.LongTensor(token_sentence))
|
85 |
token_id = torch._C._nn.pad_sequence(token_id, batch_first=True, padding_value=0.0)[:, :512]
|
86 |
else:
|
87 |
token_id = text
|
|
|
88 |
z = self.optimus.encoder(token_id, attention_mask=(token_id > 0))[1]
|
89 |
z_mu, z_logvar = self.optimus.encoder.linear(z).chunk(2, -1)
|
90 |
return z_mu.squeeze(1) * self.text_scale_factor
|
@@ -92,6 +92,7 @@ class CoDi(DDPM):
|
|
92 |
@torch.no_grad()
|
93 |
def optimus_decode(self, z, temperature=1.0, max_length=30):
|
94 |
z = 1.0 / self.text_scale_factor * z
|
|
|
95 |
return self.optimus.decode(z, temperature, max_length=max_length)
|
96 |
|
97 |
@torch.no_grad()
|
|
|
75 |
@torch.no_grad()
|
76 |
def optimus_encode(self, text):
|
77 |
if isinstance(text, List):
|
78 |
+
token = [self.optimus.tokenizer_encoder.tokenize(sentence.lower()) for sentence in text]
|
|
|
79 |
token_id = []
|
80 |
for tokeni in token:
|
81 |
+
token_sentence = [self.optimus.tokenizer_encoder._convert_token_to_id(i) for i in tokeni]
|
82 |
+
token_sentence = self.optimus.tokenizer_encoder.add_special_tokens_single_sentence(token_sentence)
|
83 |
token_id.append(torch.LongTensor(token_sentence))
|
84 |
token_id = torch._C._nn.pad_sequence(token_id, batch_first=True, padding_value=0.0)[:, :512]
|
85 |
else:
|
86 |
token_id = text
|
87 |
+
token_id = token_id.to(self.device)
|
88 |
z = self.optimus.encoder(token_id, attention_mask=(token_id > 0))[1]
|
89 |
z_mu, z_logvar = self.optimus.encoder.linear(z).chunk(2, -1)
|
90 |
return z_mu.squeeze(1) * self.text_scale_factor
|
|
|
92 |
@torch.no_grad()
|
93 |
def optimus_decode(self, z, temperature=1.0, max_length=30):
|
94 |
z = 1.0 / self.text_scale_factor * z
|
95 |
+
z = z.to(self.device)
|
96 |
return self.optimus.decode(z, temperature, max_length=max_length)
|
97 |
|
98 |
@torch.no_grad()
|
core/models/codi_2.py
CHANGED
@@ -1,221 +1,226 @@
|
|
1 |
-
from typing import Dict, List
|
2 |
-
import os
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
import torch.nn.functional as F
|
7 |
-
import numpy as np
|
8 |
-
import numpy.random as npr
|
9 |
-
import copy
|
10 |
-
from functools import partial
|
11 |
-
from contextlib import contextmanager
|
12 |
-
|
13 |
-
from .common.get_model import get_model, register
|
14 |
-
from .sd import DDPM
|
15 |
-
|
16 |
-
version = '0'
|
17 |
-
symbol = 'thesis_model'
|
18 |
-
|
19 |
-
|
20 |
-
@register('thesis_model', version)
|
21 |
-
class CoDi(DDPM):
|
22 |
-
def __init__(self,
|
23 |
-
autokl_cfg=None,
|
24 |
-
optimus_cfg=None,
|
25 |
-
clip_cfg=None,
|
26 |
-
vision_scale_factor=0.1812,
|
27 |
-
text_scale_factor=4.3108,
|
28 |
-
audio_scale_factor=0.9228,
|
29 |
-
scale_by_std=False,
|
30 |
-
*args,
|
31 |
-
**kwargs):
|
32 |
-
super().__init__(*args, **kwargs)
|
33 |
-
|
34 |
-
if autokl_cfg is not None:
|
35 |
-
self.autokl = get_model()(autokl_cfg)
|
36 |
-
|
37 |
-
if optimus_cfg is not None:
|
38 |
-
self.optimus = get_model()(optimus_cfg)
|
39 |
-
|
40 |
-
if clip_cfg is not None:
|
41 |
-
self.clip = get_model()(clip_cfg)
|
42 |
-
|
43 |
-
if not scale_by_std:
|
44 |
-
self.vision_scale_factor = vision_scale_factor
|
45 |
-
self.text_scale_factor = text_scale_factor
|
46 |
-
self.audio_scale_factor = audio_scale_factor
|
47 |
-
else:
|
48 |
-
self.register_buffer("text_scale_factor", torch.tensor(text_scale_factor))
|
49 |
-
self.register_buffer("audio_scale_factor", torch.tensor(audio_scale_factor))
|
50 |
-
self.register_buffer('vision_scale_factor', torch.tensor(vision_scale_factor))
|
51 |
-
|
52 |
-
@property
|
53 |
-
def device(self):
|
54 |
-
return next(self.parameters()).device
|
55 |
-
|
56 |
-
@torch.no_grad()
|
57 |
-
def autokl_encode(self, image):
|
58 |
-
encoder_posterior = self.autokl.encode(image)
|
59 |
-
z = encoder_posterior.sample().to(image.dtype)
|
60 |
-
return self.vision_scale_factor * z
|
61 |
-
|
62 |
-
@torch.no_grad()
|
63 |
-
def autokl_decode(self, z):
|
64 |
-
z = 1. / self.vision_scale_factor * z
|
65 |
-
return self.autokl.decode(z)
|
66 |
-
|
67 |
-
@torch.no_grad()
|
68 |
-
def optimus_encode(self, text):
|
69 |
-
if isinstance(text, List):
|
70 |
-
tokenizer = self.optimus.tokenizer_encoder
|
71 |
-
token = [tokenizer.tokenize(sentence.lower()) for sentence in text]
|
72 |
-
token_id = []
|
73 |
-
for tokeni in token:
|
74 |
-
token_sentence = [tokenizer._convert_token_to_id(i) for i in tokeni]
|
75 |
-
token_sentence = tokenizer.add_special_tokens_single_sentence(token_sentence)
|
76 |
-
token_id.append(torch.LongTensor(token_sentence))
|
77 |
-
token_id = torch._C._nn.pad_sequence(token_id, batch_first=True, padding_value=0.0)[:, :512]
|
78 |
-
else:
|
79 |
-
token_id = text
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
self.clip.encode_type =
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
self.clip.encode_type =
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
loss = torch.nn.functional.mse_loss(target, pred
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
loss =
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
model_output
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
target =
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
loss_simple = self.
|
171 |
-
elif xtype_i == '
|
172 |
-
loss_simple = self.
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
#
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
z_a, z_b
|
184 |
-
|
185 |
-
|
186 |
-
z_b =
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List
|
2 |
+
import os
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import numpy as np
|
8 |
+
import numpy.random as npr
|
9 |
+
import copy
|
10 |
+
from functools import partial
|
11 |
+
from contextlib import contextmanager
|
12 |
+
|
13 |
+
from .common.get_model import get_model, register
|
14 |
+
from .sd import DDPM
|
15 |
+
|
16 |
+
version = '0'
|
17 |
+
symbol = 'thesis_model'
|
18 |
+
|
19 |
+
|
20 |
+
@register('thesis_model', version)
|
21 |
+
class CoDi(DDPM):
|
22 |
+
def __init__(self,
|
23 |
+
autokl_cfg=None,
|
24 |
+
optimus_cfg=None,
|
25 |
+
clip_cfg=None,
|
26 |
+
vision_scale_factor=0.1812,
|
27 |
+
text_scale_factor=4.3108,
|
28 |
+
audio_scale_factor=0.9228,
|
29 |
+
scale_by_std=False,
|
30 |
+
*args,
|
31 |
+
**kwargs):
|
32 |
+
super().__init__(*args, **kwargs)
|
33 |
+
|
34 |
+
if autokl_cfg is not None:
|
35 |
+
self.autokl = get_model()(autokl_cfg)
|
36 |
+
|
37 |
+
if optimus_cfg is not None:
|
38 |
+
self.optimus = get_model()(optimus_cfg)
|
39 |
+
|
40 |
+
if clip_cfg is not None:
|
41 |
+
self.clip = get_model()(clip_cfg)
|
42 |
+
|
43 |
+
if not scale_by_std:
|
44 |
+
self.vision_scale_factor = vision_scale_factor
|
45 |
+
self.text_scale_factor = text_scale_factor
|
46 |
+
self.audio_scale_factor = audio_scale_factor
|
47 |
+
else:
|
48 |
+
self.register_buffer("text_scale_factor", torch.tensor(text_scale_factor))
|
49 |
+
self.register_buffer("audio_scale_factor", torch.tensor(audio_scale_factor))
|
50 |
+
self.register_buffer('vision_scale_factor', torch.tensor(vision_scale_factor))
|
51 |
+
|
52 |
+
@property
|
53 |
+
def device(self):
|
54 |
+
return next(self.parameters()).device
|
55 |
+
|
56 |
+
@torch.no_grad()
|
57 |
+
def autokl_encode(self, image):
|
58 |
+
encoder_posterior = self.autokl.encode(image)
|
59 |
+
z = encoder_posterior.sample().to(image.dtype)
|
60 |
+
return self.vision_scale_factor * z
|
61 |
+
|
62 |
+
@torch.no_grad()
|
63 |
+
def autokl_decode(self, z):
|
64 |
+
z = 1. / self.vision_scale_factor * z
|
65 |
+
return self.autokl.decode(z)
|
66 |
+
|
67 |
+
@torch.no_grad()
|
68 |
+
def optimus_encode(self, text):
|
69 |
+
if isinstance(text, List):
|
70 |
+
tokenizer = self.optimus.tokenizer_encoder
|
71 |
+
token = [tokenizer.tokenize(sentence.lower()) for sentence in text]
|
72 |
+
token_id = []
|
73 |
+
for tokeni in token:
|
74 |
+
token_sentence = [tokenizer._convert_token_to_id(i) for i in tokeni]
|
75 |
+
token_sentence = tokenizer.add_special_tokens_single_sentence(token_sentence)
|
76 |
+
token_id.append(torch.LongTensor(token_sentence))
|
77 |
+
token_id = torch._C._nn.pad_sequence(token_id, batch_first=True, padding_value=0.0)[:, :512]
|
78 |
+
else:
|
79 |
+
token_id = text
|
80 |
+
token_id = token_id.to(self.device)
|
81 |
+
z = self.optimus.encoder(token_id, attention_mask=(token_id > 0))[1]
|
82 |
+
z_mu, z_logvar = self.optimus.encoder.linear(z).chunk(2, -1)
|
83 |
+
return z_mu.squeeze(1) * self.text_scale_factor
|
84 |
+
|
85 |
+
@torch.no_grad()
|
86 |
+
def optimus_decode(self, z, temperature=1.0, max_length=30):
|
87 |
+
z = 1.0 / self.text_scale_factor * z
|
88 |
+
z = z.to(self.device)
|
89 |
+
return self.optimus.decode(z, temperature, max_length=max_length)
|
90 |
+
|
91 |
+
@torch.no_grad()
|
92 |
+
def clip_encode_text(self, text, encode_type='encode_text'):
|
93 |
+
swap_type = self.clip.encode_type
|
94 |
+
self.clip.encode_type = encode_type
|
95 |
+
embedding = self.clip(text, encode_type)
|
96 |
+
self.clip.encode_type = swap_type
|
97 |
+
return embedding
|
98 |
+
|
99 |
+
@torch.no_grad()
|
100 |
+
def clip_encode_vision(self, vision, encode_type='encode_vision'):
|
101 |
+
swap_type = self.clip.encode_type
|
102 |
+
self.clip.encode_type = encode_type
|
103 |
+
embedding = self.clip(vision, encode_type)
|
104 |
+
self.clip.encode_type = swap_type
|
105 |
+
return embedding
|
106 |
+
|
107 |
+
@torch.no_grad()
|
108 |
+
def clap_encode_audio(self, audio):
|
109 |
+
embedding = self.clap(audio)
|
110 |
+
return embedding
|
111 |
+
|
112 |
+
def forward(self, x=None, c=None, noise=None, xtype='frontal', ctype='text', u=None, return_algined_latents=False, env_enc=False):
|
113 |
+
if isinstance(x, list):
|
114 |
+
t = torch.randint(0, self.num_timesteps, (x[0].shape[0],), device=x[0].device).long()
|
115 |
+
else:
|
116 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
|
117 |
+
return self.p_losses(x, c, t, noise, xtype, ctype, u, return_algined_latents, env_enc)
|
118 |
+
|
119 |
+
def apply_model(self, x_noisy, t, cond, xtype='frontal', ctype='text', u=None, return_algined_latents=False, env_enc=False):
|
120 |
+
return self.model.diffusion_model(x_noisy, t, cond, xtype, ctype, u, return_algined_latents, env_enc=env_enc)
|
121 |
+
|
122 |
+
def get_pixel_loss(self, pred, target, mean=True):
|
123 |
+
if self.loss_type == 'l1':
|
124 |
+
loss = (target - pred).abs()
|
125 |
+
if mean:
|
126 |
+
loss = loss.mean()
|
127 |
+
elif self.loss_type == 'l2':
|
128 |
+
if mean:
|
129 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
130 |
+
else:
|
131 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
132 |
+
else:
|
133 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
134 |
+
loss = torch.nan_to_num(loss, nan=0.0, posinf=0.0, neginf=-0.0)
|
135 |
+
return loss
|
136 |
+
|
137 |
+
def get_text_loss(self, pred, target):
|
138 |
+
if self.loss_type == 'l1':
|
139 |
+
loss = (target - pred).abs()
|
140 |
+
elif self.loss_type == 'l2':
|
141 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
142 |
+
loss = torch.nan_to_num(loss, nan=0.0, posinf=0.0, neginf=0.0)
|
143 |
+
return loss
|
144 |
+
|
145 |
+
def p_losses(self, x_start, cond, t, noise=None, xtype='frontal', ctype='text', u=None,
|
146 |
+
return_algined_latents=False, env_enc=False):
|
147 |
+
if isinstance(x_start, list):
|
148 |
+
noise = [torch.randn_like(x_start_i) for x_start_i in x_start] if noise is None else noise
|
149 |
+
x_noisy = [self.q_sample(x_start=x_start_i, t=t, noise=noise_i) for x_start_i, noise_i in
|
150 |
+
zip(x_start, noise)]
|
151 |
+
if not env_enc:
|
152 |
+
model_output = self.apply_model(x_noisy, t, cond, xtype, ctype, u, return_algined_latents, env_enc)
|
153 |
+
else:
|
154 |
+
model_output, h_con = self.apply_model(x_noisy, t, cond, xtype, ctype, u, return_algined_latents, env_enc)
|
155 |
+
if return_algined_latents:
|
156 |
+
return model_output
|
157 |
+
|
158 |
+
loss_dict = {}
|
159 |
+
|
160 |
+
if self.parameterization == "x0":
|
161 |
+
target = x_start
|
162 |
+
elif self.parameterization == "eps":
|
163 |
+
target = noise
|
164 |
+
else:
|
165 |
+
raise NotImplementedError()
|
166 |
+
|
167 |
+
loss = 0.0
|
168 |
+
for model_output_i, target_i, xtype_i in zip(model_output, target, xtype):
|
169 |
+
if xtype_i == 'frontal':
|
170 |
+
loss_simple = self.get_pixel_loss(model_output_i, target_i, mean=False).mean([1, 2, 3])
|
171 |
+
elif xtype_i == 'text':
|
172 |
+
loss_simple = self.get_text_loss(model_output_i, target_i).mean([1])
|
173 |
+
elif xtype_i == 'lateral':
|
174 |
+
loss_simple = self.get_pixel_loss(model_output_i, target_i, mean=False).mean([1, 2, 3])
|
175 |
+
loss += loss_simple.mean()
|
176 |
+
|
177 |
+
|
178 |
+
# Controlliamo se il modello ha restituito anche h_con
|
179 |
+
# In tal caso, abbiamo le rappresentazioni latenti delle due modalità
|
180 |
+
# estratte dagli environmental encoder, essendo due tensori di dimensione batch_sizex1x1280
|
181 |
+
# possiamo utilizzarli per calcolare anche un termine di contrastive loss (crossentropy come in CLIP)
|
182 |
+
if h_con is not None:
|
183 |
+
def similarity(z_a, z_b):
|
184 |
+
return F.cosine_similarity(z_a, z_b)
|
185 |
+
|
186 |
+
z_a, z_b = h_con
|
187 |
+
|
188 |
+
z_a = z_a / z_a.norm(dim=-1, keepdim=True)
|
189 |
+
z_b = z_b / z_b.norm(dim=-1, keepdim=True)
|
190 |
+
|
191 |
+
logits_a = z_a.squeeze() @ z_b.squeeze().t()
|
192 |
+
logits_b = z_a.squeeze() @ z_b.squeeze().t()
|
193 |
+
|
194 |
+
labels = torch.arange(len(z_a)).to(z_a.device)
|
195 |
+
|
196 |
+
loss_a = F.cross_entropy(logits_a, labels)
|
197 |
+
loss_b = F.cross_entropy(logits_b, labels)
|
198 |
+
|
199 |
+
loss_con = (loss_a + loss_b) / 2
|
200 |
+
loss += loss_con
|
201 |
+
|
202 |
+
|
203 |
+
return loss / len(xtype)
|
204 |
+
|
205 |
+
else:
|
206 |
+
noise = torch.randn_like(x_start) if noise is None else noise
|
207 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
208 |
+
model_output = self.apply_model(x_noisy, t, cond, xtype, ctype)
|
209 |
+
|
210 |
+
loss_dict = {}
|
211 |
+
|
212 |
+
if self.parameterization == "x0":
|
213 |
+
target = x_start
|
214 |
+
elif self.parameterization == "eps":
|
215 |
+
target = noise
|
216 |
+
else:
|
217 |
+
raise NotImplementedError()
|
218 |
+
|
219 |
+
if xtype == 'frontal':
|
220 |
+
loss_simple = self.get_pixel_loss(model_output, target, mean=False).mean([1, 2, 3])
|
221 |
+
elif xtype == 'text':
|
222 |
+
loss_simple = self.get_text_loss(model_output, target).mean([1])
|
223 |
+
elif xtype == 'lateral':
|
224 |
+
loss_simple = self.get_pixel_loss(model_output, target, mean=False).mean([1, 2, 3])
|
225 |
+
loss = loss_simple.mean()
|
226 |
+
return loss
|
core/models/common/__pycache__/get_model.cpython-311.pyc
ADDED
Binary file (4.81 kB). View file
|
|
core/models/common/__pycache__/get_model.cpython-38.pyc
CHANGED
Binary files a/core/models/common/__pycache__/get_model.cpython-38.pyc and b/core/models/common/__pycache__/get_model.cpython-38.pyc differ
|
|
core/models/common/__pycache__/get_optimizer.cpython-311.pyc
ADDED
Binary file (3.2 kB). View file
|
|
core/models/common/__pycache__/get_optimizer.cpython-38.pyc
CHANGED
Binary files a/core/models/common/__pycache__/get_optimizer.cpython-38.pyc and b/core/models/common/__pycache__/get_optimizer.cpython-38.pyc differ
|
|
core/models/common/__pycache__/get_scheduler.cpython-311.pyc
ADDED
Binary file (16.5 kB). View file
|
|
core/models/common/__pycache__/get_scheduler.cpython-38.pyc
CHANGED
Binary files a/core/models/common/__pycache__/get_scheduler.cpython-38.pyc and b/core/models/common/__pycache__/get_scheduler.cpython-38.pyc differ
|
|
core/models/common/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (18.3 kB). View file
|
|
core/models/common/__pycache__/utils.cpython-38.pyc
CHANGED
Binary files a/core/models/common/__pycache__/utils.cpython-38.pyc and b/core/models/common/__pycache__/utils.cpython-38.pyc differ
|
|
core/models/dani_model.py
CHANGED
@@ -160,7 +160,9 @@ class dani_model(pl.LightningModule):
|
|
160 |
condition_types=condition_types,
|
161 |
eta=ddim_eta,
|
162 |
verbose=False,
|
163 |
-
mix_weight=mix_weight
|
|
|
|
|
164 |
|
165 |
out_all = []
|
166 |
for i, xtype_i in enumerate(xtype):
|
|
|
160 |
condition_types=condition_types,
|
161 |
eta=ddim_eta,
|
162 |
verbose=False,
|
163 |
+
mix_weight=mix_weight,
|
164 |
+
progress_bar=None
|
165 |
+
)
|
166 |
|
167 |
out_all = []
|
168 |
for i, xtype_i in enumerate(xtype):
|
core/models/ddim/__pycache__/ddim.cpython-311.pyc
ADDED
Binary file (12.9 kB). View file
|
|
core/models/ddim/__pycache__/ddim.cpython-38.pyc
CHANGED
Binary files a/core/models/ddim/__pycache__/ddim.cpython-38.pyc and b/core/models/ddim/__pycache__/ddim.cpython-38.pyc differ
|
|
core/models/ddim/__pycache__/ddim_vd.cpython-311.pyc
ADDED
Binary file (8.39 kB). View file
|
|
core/models/ddim/__pycache__/ddim_vd.cpython-38.pyc
CHANGED
Binary files a/core/models/ddim/__pycache__/ddim_vd.cpython-38.pyc and b/core/models/ddim/__pycache__/ddim_vd.cpython-38.pyc differ
|
|
core/models/ddim/__pycache__/diffusion_utils.cpython-311.pyc
ADDED
Binary file (16.1 kB). View file
|
|
core/models/ddim/__pycache__/diffusion_utils.cpython-38.pyc
CHANGED
Binary files a/core/models/ddim/__pycache__/diffusion_utils.cpython-38.pyc and b/core/models/ddim/__pycache__/diffusion_utils.cpython-38.pyc differ
|
|
core/models/ddim/ddim.py
CHANGED
@@ -7,6 +7,7 @@ from functools import partial
|
|
7 |
|
8 |
from .diffusion_utils import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
9 |
|
|
|
10 |
|
11 |
class DDIMSampler(object):
|
12 |
def __init__(self, model, schedule="linear", **kwargs):
|
@@ -136,7 +137,8 @@ class DDIMSampler(object):
|
|
136 |
score_corrector=None,
|
137 |
corrector_kwargs=None,
|
138 |
unconditional_guidance_scale=1.,
|
139 |
-
unconditional_conditioning=None,
|
|
|
140 |
device = self.model.betas.device
|
141 |
b = shape[0]
|
142 |
if x_T is None:
|
@@ -157,7 +159,11 @@ class DDIMSampler(object):
|
|
157 |
|
158 |
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
159 |
|
|
|
|
|
160 |
for i, step in enumerate(iterator):
|
|
|
|
|
161 |
index = total_steps - i - 1
|
162 |
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
163 |
|
@@ -180,6 +186,9 @@ class DDIMSampler(object):
|
|
180 |
intermediates['x_inter'].append(img)
|
181 |
intermediates['pred_x0'].append(pred_x0)
|
182 |
|
|
|
|
|
|
|
183 |
return img, intermediates
|
184 |
|
185 |
@torch.no_grad()
|
|
|
7 |
|
8 |
from .diffusion_utils import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
9 |
|
10 |
+
import streamlit as st
|
11 |
|
12 |
class DDIMSampler(object):
|
13 |
def __init__(self, model, schedule="linear", **kwargs):
|
|
|
137 |
score_corrector=None,
|
138 |
corrector_kwargs=None,
|
139 |
unconditional_guidance_scale=1.,
|
140 |
+
unconditional_conditioning=None,
|
141 |
+
progress_bar=None,):
|
142 |
device = self.model.betas.device
|
143 |
b = shape[0]
|
144 |
if x_T is None:
|
|
|
159 |
|
160 |
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
161 |
|
162 |
+
if progress_bar is not None:
|
163 |
+
progress_bar.text("Generating samples...")
|
164 |
for i, step in enumerate(iterator):
|
165 |
+
if progress_bar is not None:
|
166 |
+
progress_bar.progress(i/total_steps)
|
167 |
index = total_steps - i - 1
|
168 |
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
169 |
|
|
|
186 |
intermediates['x_inter'].append(img)
|
187 |
intermediates['pred_x0'].append(pred_x0)
|
188 |
|
189 |
+
if progress_bar is not None:
|
190 |
+
progress_bar.success("Sampling complete.")
|
191 |
+
|
192 |
return img, intermediates
|
193 |
|
194 |
@torch.no_grad()
|
core/models/ddim/ddim_vd.py
CHANGED
@@ -184,4 +184,4 @@ class DDIMSampler_VD(DDIMSampler):
|
|
184 |
x_prev_i = a_prev.sqrt() * pred_x0_i + dir_xt + noise
|
185 |
x_prev.append(x_prev_i)
|
186 |
pred_x0.append(pred_x0_i)
|
187 |
-
return x_prev, pred_x0
|
|
|
184 |
x_prev_i = a_prev.sqrt() * pred_x0_i + dir_xt + noise
|
185 |
x_prev.append(x_prev_i)
|
186 |
pred_x0.append(pred_x0_i)
|
187 |
+
return x_prev, pred_x0
|
core/models/encoders/__pycache__/clap.cpython-311.pyc
CHANGED
Binary files a/core/models/encoders/__pycache__/clap.cpython-311.pyc and b/core/models/encoders/__pycache__/clap.cpython-311.pyc differ
|
|
core/models/encoders/__pycache__/clip.cpython-311.pyc
CHANGED
Binary files a/core/models/encoders/__pycache__/clip.cpython-311.pyc and b/core/models/encoders/__pycache__/clip.cpython-311.pyc differ
|
|
core/models/encoders/__pycache__/clip.cpython-38.pyc
CHANGED
Binary files a/core/models/encoders/__pycache__/clip.cpython-38.pyc and b/core/models/encoders/__pycache__/clip.cpython-38.pyc differ
|
|
core/models/encoders/clap_modules/__pycache__/__init__.cpython-311.pyc
CHANGED
Binary files a/core/models/encoders/clap_modules/__pycache__/__init__.cpython-311.pyc and b/core/models/encoders/clap_modules/__pycache__/__init__.cpython-311.pyc differ
|
|
core/models/encoders/clap_modules/open_clip/__pycache__/__init__.cpython-311.pyc
CHANGED
Binary files a/core/models/encoders/clap_modules/open_clip/__pycache__/__init__.cpython-311.pyc and b/core/models/encoders/clap_modules/open_clip/__pycache__/__init__.cpython-311.pyc differ
|
|
core/models/encoders/clap_modules/open_clip/__pycache__/factory.cpython-311.pyc
CHANGED
Binary files a/core/models/encoders/clap_modules/open_clip/__pycache__/factory.cpython-311.pyc and b/core/models/encoders/clap_modules/open_clip/__pycache__/factory.cpython-311.pyc differ
|
|
core/models/encoders/clap_modules/open_clip/__pycache__/feature_fusion.cpython-311.pyc
CHANGED
Binary files a/core/models/encoders/clap_modules/open_clip/__pycache__/feature_fusion.cpython-311.pyc and b/core/models/encoders/clap_modules/open_clip/__pycache__/feature_fusion.cpython-311.pyc differ
|
|