Spaces:
Running
Running
add app and dependencies
Browse files- .gitignore +2 -0
- app.py +41 -0
- requirements.txt +107 -0
- whisper.py +73 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# audio files
|
2 |
+
*.wav
|
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from whisper import transcribe_audio
|
4 |
+
|
5 |
+
|
6 |
+
def transcribe(audio_file):
|
7 |
+
return transcribe_audio(audio_file)
|
8 |
+
|
9 |
+
|
10 |
+
def main():
|
11 |
+
st.set_page_config(page_title="Transcriber", page_icon="💬", layout="wide")
|
12 |
+
st.markdown(
|
13 |
+
"""<h1 align="center";>Transcriber</h1>""",
|
14 |
+
unsafe_allow_html=True,
|
15 |
+
)
|
16 |
+
cols = st.columns(2)
|
17 |
+
|
18 |
+
with cols[0]:
|
19 |
+
with st.container(border=True, height=300):
|
20 |
+
audio_file = st.file_uploader(
|
21 |
+
label="Upload your audio",
|
22 |
+
type=["wav", "mp3"],
|
23 |
+
key="audio_file_uploader",
|
24 |
+
)
|
25 |
+
if audio_file:
|
26 |
+
st.audio(audio_file)
|
27 |
+
sub_btn = st.button("Run", key="sub_btn")
|
28 |
+
with cols[1]:
|
29 |
+
with st.container(border=True, height=400):
|
30 |
+
if sub_btn and audio_file:
|
31 |
+
st.text_area(
|
32 |
+
label="Transcribed text",
|
33 |
+
value=transcribe(audio_file.read())["text"],
|
34 |
+
height=350,
|
35 |
+
)
|
36 |
+
else:
|
37 |
+
st.info("Upload audio file", icon="💡")
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.31.0
|
2 |
+
aiofiles==23.2.1
|
3 |
+
altair==5.3.0
|
4 |
+
annotated-types==0.7.0
|
5 |
+
anyio==4.4.0
|
6 |
+
attrs==23.2.0
|
7 |
+
blinker==1.8.2
|
8 |
+
cachetools==5.3.3
|
9 |
+
certifi==2024.6.2
|
10 |
+
charset-normalizer==3.3.2
|
11 |
+
click==8.1.7
|
12 |
+
contourpy==1.2.1
|
13 |
+
cycler==0.12.1
|
14 |
+
dnspython==2.6.1
|
15 |
+
email_validator==2.1.1
|
16 |
+
exceptiongroup==1.2.1
|
17 |
+
fastapi==0.111.0
|
18 |
+
fastapi-cli==0.0.4
|
19 |
+
ffmpy==0.3.2
|
20 |
+
filelock==3.15.1
|
21 |
+
fonttools==4.53.0
|
22 |
+
fsspec==2024.6.0
|
23 |
+
gitdb==4.0.11
|
24 |
+
GitPython==3.1.43
|
25 |
+
h11==0.14.0
|
26 |
+
httpcore==1.0.5
|
27 |
+
httptools==0.6.1
|
28 |
+
httpx==0.27.0
|
29 |
+
huggingface-hub==0.23.3
|
30 |
+
idna==3.7
|
31 |
+
importlib_resources==6.4.0
|
32 |
+
Jinja2==3.1.4
|
33 |
+
jsonschema==4.22.0
|
34 |
+
jsonschema-specifications==2023.12.1
|
35 |
+
kiwisolver==1.4.5
|
36 |
+
markdown-it-py==3.0.0
|
37 |
+
MarkupSafe==2.1.5
|
38 |
+
matplotlib==3.9.0
|
39 |
+
mdurl==0.1.2
|
40 |
+
mpmath==1.3.0
|
41 |
+
networkx==3.3
|
42 |
+
numpy==1.26.4
|
43 |
+
nvidia-cublas-cu12==12.1.3.1
|
44 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
45 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
46 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
47 |
+
nvidia-cudnn-cu12==8.9.2.26
|
48 |
+
nvidia-cufft-cu12==11.0.2.54
|
49 |
+
nvidia-curand-cu12==10.3.2.106
|
50 |
+
nvidia-cusolver-cu12==11.4.5.107
|
51 |
+
nvidia-cusparse-cu12==12.1.0.106
|
52 |
+
nvidia-nccl-cu12==2.20.5
|
53 |
+
nvidia-nvjitlink-cu12==12.5.40
|
54 |
+
nvidia-nvtx-cu12==12.1.105
|
55 |
+
orjson==3.10.5
|
56 |
+
packaging==24.1
|
57 |
+
pandas==2.2.2
|
58 |
+
pillow==10.3.0
|
59 |
+
protobuf==4.25.3
|
60 |
+
psutil==5.9.8
|
61 |
+
pyarrow==16.1.0
|
62 |
+
pydantic==2.7.4
|
63 |
+
pydantic_core==2.18.4
|
64 |
+
pydeck==0.9.1
|
65 |
+
pydub==0.25.1
|
66 |
+
Pygments==2.18.0
|
67 |
+
pyparsing==3.1.2
|
68 |
+
python-dateutil==2.9.0.post0
|
69 |
+
python-dotenv==1.0.1
|
70 |
+
python-multipart==0.0.9
|
71 |
+
pytz==2024.1
|
72 |
+
PyYAML==6.0.1
|
73 |
+
referencing==0.35.1
|
74 |
+
regex==2024.5.15
|
75 |
+
requests==2.32.3
|
76 |
+
rich==13.7.1
|
77 |
+
rpds-py==0.18.1
|
78 |
+
ruff==0.4.8
|
79 |
+
safetensors==0.4.3
|
80 |
+
semantic-version==2.10.0
|
81 |
+
shellingham==1.5.4
|
82 |
+
six==1.16.0
|
83 |
+
smmap==5.0.1
|
84 |
+
sniffio==1.3.1
|
85 |
+
starlette==0.37.2
|
86 |
+
streamlit==1.35.0
|
87 |
+
sympy==1.12.1
|
88 |
+
tenacity==8.3.0
|
89 |
+
tokenizers==0.19.1
|
90 |
+
toml==0.10.2
|
91 |
+
tomlkit==0.12.0
|
92 |
+
toolz==0.12.1
|
93 |
+
torch==2.3.1
|
94 |
+
tornado==6.4.1
|
95 |
+
tqdm==4.66.4
|
96 |
+
transformers==4.41.2
|
97 |
+
triton==2.3.1
|
98 |
+
typer==0.12.3
|
99 |
+
typing_extensions==4.12.2
|
100 |
+
tzdata==2024.1
|
101 |
+
ujson==5.10.0
|
102 |
+
urllib3==2.2.1
|
103 |
+
uvicorn==0.30.1
|
104 |
+
uvloop==0.19.0
|
105 |
+
watchdog==4.0.1
|
106 |
+
watchfiles==0.22.0
|
107 |
+
websockets==11.0.3
|
whisper.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
3 |
+
|
4 |
+
|
5 |
+
class Whisper:
|
6 |
+
"""Whisper - audio transcriber class"""
|
7 |
+
|
8 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
10 |
+
|
11 |
+
def __init__(self, model_id: str = "openai/whisper-base") -> None:
|
12 |
+
self.model_id = model_id
|
13 |
+
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
14 |
+
model_id,
|
15 |
+
torch_dtype=self.torch_dtype,
|
16 |
+
low_cpu_mem_usage=True,
|
17 |
+
use_safetensors=True,
|
18 |
+
)
|
19 |
+
self.model.to(self.device)
|
20 |
+
self.processor = AutoProcessor.from_pretrained(model_id)
|
21 |
+
|
22 |
+
@property
|
23 |
+
def model_name(self):
|
24 |
+
"""
|
25 |
+
Getter method for retrieving the model name.
|
26 |
+
"""
|
27 |
+
return self.model_id
|
28 |
+
|
29 |
+
def save(self, save_dir: str):
|
30 |
+
"""
|
31 |
+
Saves the model and processor to the specified directory.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
save_dir (str): The directory where the model and processor will be saved.
|
35 |
+
"""
|
36 |
+
self.model.save_pretrained(f"{save_dir}/model")
|
37 |
+
self.processor.save_pretrained(f"{save_dir}/processor")
|
38 |
+
|
39 |
+
def load(self, load_dir: str):
|
40 |
+
"""
|
41 |
+
Load the model and processor from the specified directory.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
load_dir (str): The directory from which to load the model and processor.
|
45 |
+
"""
|
46 |
+
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(f"{load_dir}/model")
|
47 |
+
self.processor = AutoProcessor.from_pretrained(f"{load_dir}/processor")
|
48 |
+
|
49 |
+
self.model.to(self.device)
|
50 |
+
|
51 |
+
def pipeline(self):
|
52 |
+
pipe = pipeline(
|
53 |
+
"automatic-speech-recognition",
|
54 |
+
model=self.model,
|
55 |
+
tokenizer=self.processor.tokenizer,
|
56 |
+
feature_extractor=self.processor.feature_extractor,
|
57 |
+
max_new_tokens=128,
|
58 |
+
chunk_length_s=15,
|
59 |
+
batch_size=16,
|
60 |
+
return_timestamps=True,
|
61 |
+
torch_dtype=self.torch_dtype,
|
62 |
+
device=self.device,
|
63 |
+
)
|
64 |
+
|
65 |
+
return pipe
|
66 |
+
|
67 |
+
|
68 |
+
def transcribe_audio(file):
|
69 |
+
whisper = Whisper()
|
70 |
+
pipe = whisper.pipeline()
|
71 |
+
|
72 |
+
result = pipe(file)
|
73 |
+
return result
|