Spaces:
Running
Running
| // Generate synthetic Trackio-like CSV data with realistic ML curves. | |
| // - Steps are simple integers (e.g., 1..N) | |
| // - Metrics: epoch, train_accuracy, val_accuracy, train_loss, val_loss | |
| // - W&B-like run names (e.g., pleasant-flower-1) | |
| // - Deterministic with --seed | |
| // | |
| // Usage: | |
| // node app/scripts/generate-trackio-data.mjs \ | |
| // --runs 3 \ | |
| // --steps 10 \ | |
| // --out app/src/content/assets/data/trackio_wandb_synth.csv \ | |
| // [--seed 42] [--epoch-max 3.0] [--amount 1.0] [--start 1] | |
| // | |
| // To overwrite the demo file used by the embed: | |
| // node app/scripts/generate-trackio-data.mjs --runs 3 --steps 10 --out app/src/content/assets/data/trackio_wandb_demo.csv --seed 1337 | |
| import fs from 'node:fs/promises'; | |
| import path from 'node:path'; | |
| function parseArgs(argv){ | |
| const args = { runs: 3, steps: 10, out: '', seed: undefined, epochMax: 3.0, amount: 1, start: 1 }; | |
| for (let i = 2; i < argv.length; i++){ | |
| const a = argv[i]; | |
| if (a === '--runs' && argv[i+1]) { args.runs = Math.max(1, parseInt(argv[++i], 10) || 3); continue; } | |
| if (a === '--steps' && argv[i+1]) { args.steps = Math.max(2, parseInt(argv[++i], 10) || 10); continue; } | |
| if (a === '--out' && argv[i+1]) { args.out = argv[++i]; continue; } | |
| if (a === '--seed' && argv[i+1]) { args.seed = Number(argv[++i]); continue; } | |
| if (a === '--epoch-max' && argv[i+1]) { args.epochMax = Number(argv[++i]) || 3.0; continue; } | |
| if (a === '--amount' && argv[i+1]) { args.amount = Number(argv[++i]) || 1.0; continue; } | |
| if (a === '--start' && argv[i+1]) { args.start = parseInt(argv[++i], 10) || 1; continue; } | |
| } | |
| if (!args.out) { | |
| args.out = path.join('app', 'src', 'content', 'assets', 'data', 'trackio_wandb_synth.csv'); | |
| } | |
| return args; | |
| } | |
| function mulberry32(seed){ | |
| let t = seed >>> 0; | |
| return function(){ | |
| t += 0x6D2B79F5; | |
| let r = Math.imul(t ^ (t >>> 15), 1 | t); | |
| r ^= r + Math.imul(r ^ (r >>> 7), 61 | r); | |
| return ((r ^ (r >>> 14)) >>> 0) / 4294967296; | |
| }; | |
| } | |
| function makeRng(seed){ | |
| if (Number.isFinite(seed)) return mulberry32(seed); | |
| return Math.random; | |
| } | |
| function randn(rng){ | |
| // Box-Muller transform | |
| let u = 0, v = 0; | |
| while (u === 0) u = rng(); | |
| while (v === 0) v = rng(); | |
| return Math.sqrt(-2.0 * Math.log(u)) * Math.cos(2.0 * Math.PI * v); | |
| } | |
| function clamp(x, lo, hi){ | |
| return Math.max(lo, Math.min(hi, x)); | |
| } | |
| function logistic(t, k=6, x0=0.5){ | |
| // 1 / (1 + e^{-k (t - x0)}) in [0,1] | |
| return 1 / (1 + Math.exp(-k * (t - x0))); | |
| } | |
| function expDecay(t, k=3){ | |
| // (1 - e^{-k t}) in [0,1] | |
| return 1 - Math.exp(-k * t); | |
| } | |
| function pick(array, rng){ | |
| return array[Math.floor(rng() * array.length) % array.length]; | |
| } | |
| function buildRunNames(count, rng){ | |
| const adjectives = [ | |
| 'pleasant','brisk','silent','ancient','bold','gentle','rapid','shy','curious','lively', | |
| 'fearless','soothing','glossy','hidden','misty','bright','calm','keen','noble','swift' | |
| ]; | |
| const nouns = [ | |
| 'flower','glade','sky','river','forest','ember','comet','meadow','harbor','dawn', | |
| 'mountain','prairie','breeze','valley','lagoon','desert','monsoon','reef','thunder','willow' | |
| ]; | |
| const names = new Set(); | |
| let attempts = 0; | |
| while (names.size < count && attempts < count * 20){ | |
| attempts++; | |
| const left = pick(adjectives, rng); | |
| const right = pick(nouns, rng); | |
| const idx = 1 + Math.floor(rng() * 9); | |
| names.add(`${left}-${right}-${idx}`); | |
| } | |
| return Array.from(names); | |
| } | |
| function formatLike(value, decimals){ | |
| return Number.isFinite(decimals) && decimals >= 0 ? value.toFixed(decimals) : String(value); | |
| } | |
| async function main(){ | |
| const args = parseArgs(process.argv); | |
| const rng = makeRng(args.seed); | |
| // Steps: integers from start .. start+steps-1 | |
| const steps = Array.from({ length: args.steps }, (_, i) => args.start + i); | |
| const stepNorm = (i) => (i - steps[0]) / (steps[steps.length-1] - steps[0]); | |
| const runs = buildRunNames(args.runs, rng); | |
| // Per-run slight variations | |
| const runParams = runs.map((_r, idx) => { | |
| const r = rng(); | |
| // Final accuracies | |
| const trainAccFinal = clamp(0.86 + (r - 0.5) * 0.12 * args.amount, 0.78, 0.97); | |
| const valAccFinal = clamp(trainAccFinal - (0.02 + rng() * 0.05), 0.70, 0.95); | |
| // Loss plateau | |
| const lossStart = 7.0 + (rng() - 0.5) * 0.10 * args.amount; // ~7.0 ±0.05 | |
| const lossPlateau = 6.78 + (rng() - 0.5) * 0.04 * args.amount; // ~6.78 ±0.02 | |
| const lossK = 2.0 + rng() * 1.5; // decay speed | |
| // Acc growth steepness and midpoint | |
| const kAcc = 4.5 + rng() * 3.0; | |
| const x0Acc = 0.35 + rng() * 0.25; | |
| return { trainAccFinal, valAccFinal, lossStart, lossPlateau, lossK, kAcc, x0Acc }; | |
| }); | |
| const lines = []; | |
| lines.push('run,step,metric,value,stderr'); | |
| // EPOCH: linear 0..epochMax across steps | |
| for (let r = 0; r < runs.length; r++){ | |
| const run = runs[r]; | |
| for (let i = 0; i < steps.length; i++){ | |
| const t = stepNorm(steps[i]); | |
| const epoch = args.epochMax * t; | |
| lines.push(`${run},${steps[i]},epoch,${formatLike(epoch, 2)},`); | |
| } | |
| } | |
| // TRAIN LOSS & VAL LOSS | |
| for (let r = 0; r < runs.length; r++){ | |
| const run = runs[r]; | |
| const p = runParams[r]; | |
| let prevTrain = null; | |
| let prevVal = null; | |
| for (let i = 0; i < steps.length; i++){ | |
| const t = stepNorm(steps[i]); | |
| const d = expDecay(t, p.lossK); // 0..1 | |
| let trainLoss = p.lossStart - (p.lossStart - p.lossPlateau) * d; | |
| let valLoss = trainLoss + 0.02 + (rng() * 0.03); | |
| // Add mild noise | |
| trainLoss += randn(rng) * 0.01 * args.amount; | |
| valLoss += randn(rng) * 0.012 * args.amount; | |
| // Keep reasonable and mostly monotonic (small upward blips allowed) | |
| if (prevTrain != null) trainLoss = Math.min(prevTrain + 0.01, trainLoss); | |
| if (prevVal != null) valLoss = Math.min(prevVal + 0.012, valLoss); | |
| prevTrain = trainLoss; prevVal = valLoss; | |
| const stderrTrain = clamp(0.03 - 0.02 * t + Math.abs(randn(rng)) * 0.003, 0.006, 0.04); | |
| const stderrVal = clamp(0.035 - 0.022 * t + Math.abs(randn(rng)) * 0.003, 0.008, 0.045); | |
| lines.push(`${run},${steps[i]},train_loss,${formatLike(trainLoss, 3)},${formatLike(stderrTrain, 3)}`); | |
| lines.push(`${run},${steps[i]},val_loss,${formatLike(valLoss, 3)},${formatLike(stderrVal, 3)}`); | |
| } | |
| } | |
| // TRAIN ACCURACY & VAL ACCURACY (logistic) | |
| for (let r = 0; r < runs.length; r++){ | |
| const run = runs[r]; | |
| const p = runParams[r]; | |
| for (let i = 0; i < steps.length; i++){ | |
| const t = stepNorm(steps[i]); | |
| const accBase = logistic(t, p.kAcc, p.x0Acc); | |
| let trainAcc = clamp(0.55 + accBase * (p.trainAccFinal - 0.55), 0, 1); | |
| let valAcc = clamp(0.52 + accBase * (p.valAccFinal - 0.52), 0, 1); | |
| // Gentle noise | |
| trainAcc = clamp(trainAcc + randn(rng) * 0.005 * args.amount, 0, 1); | |
| valAcc = clamp(valAcc + randn(rng) * 0.006 * args.amount, 0, 1); | |
| const stderrTrain = clamp(0.02 - 0.011 * t + Math.abs(randn(rng)) * 0.002, 0.006, 0.03); | |
| const stderrVal = clamp(0.022 - 0.012 * t + Math.abs(randn(rng)) * 0.002, 0.007, 0.032); | |
| lines.push(`${run},${steps[i]},train_accuracy,${formatLike(trainAcc, 4)},${formatLike(stderrTrain, 3)}`); | |
| lines.push(`${run},${steps[i]},val_accuracy,${formatLike(valAcc, 4)},${formatLike(stderrVal, 3)}`); | |
| } | |
| } | |
| // Ensure directory exists | |
| await fs.mkdir(path.dirname(args.out), { recursive: true }); | |
| await fs.writeFile(args.out, lines.join('\n') + '\n', 'utf8'); | |
| const relOut = path.relative(process.cwd(), args.out); | |
| console.log(`Synthetic CSV generated: ${relOut}`); | |
| } | |
| main().catch(err => { console.error(err?.stack || String(err)); process.exit(1); }); | |