Spaces:
Sleeping
Sleeping
| # create_dataloaders.py | |
| import logging | |
| from momentfm.utils.utils import control_randomness | |
| from torch.utils.data import DataLoader | |
| from transformer_model.scripts.config_transformer import (BATCH_SIZE, | |
| FORECAST_HORIZON) | |
| from transformer_model.scripts.utils.informer_dataset_class import \ | |
| InformerDataset | |
| def create_dataloaders(): | |
| logging.info("Setting random seeds...") | |
| control_randomness(seed=13) | |
| logging.info("Loading training dataset...") | |
| train_dataset = InformerDataset( | |
| data_split="train", random_seed=13, forecast_horizon=FORECAST_HORIZON | |
| ) | |
| logging.info( | |
| "Train set loaded — Samples: %d | Features: %d", | |
| len(train_dataset), | |
| train_dataset.n_channels, | |
| ) | |
| logging.info("Loading test dataset...") | |
| test_dataset = InformerDataset( | |
| data_split="test", random_seed=13, forecast_horizon=FORECAST_HORIZON | |
| ) | |
| logging.info( | |
| "Test set loaded — Samples: %d | Features: %d", | |
| len(test_dataset), | |
| test_dataset.n_channels, | |
| ) | |
| train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) | |
| test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True) | |
| logging.info("Dataloaders created successfully.") | |
| return train_loader, test_loader | |
| if __name__ == "__main__": | |
| create_dataloaders() | |