jeffaudi's picture
Cache examples
6b342b5 verified
import os
import socket
import time
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import base64
import requests
import json
# API for inferences
DL4EO_API_URL = "https://dl4eo--object-predict-raster.modal.run"
# Auth Token to access API
DL4EO_API_KEY = os.environ['DL4EO_API_KEY']
# width of the boxes on image
LINE_WIDTH = 2
# Check Gradio version
print(f"Gradio version: {gr.__version__}")
# Define the inference function
def predict_image(img, threshold):
if isinstance(img, Image.Image):
img = np.array(img)
if not isinstance(img, np.ndarray) or len(img.shape) != 3 or img.shape[2] != 3:
raise BaseException("predit_image(): input 'img' shoud be single RGB image in PIL or Numpy array format.")
# Encode the image data as base64
image_base64 = base64.b64encode(np.ascontiguousarray(img)).decode()
# Create a dictionary representing the JSON payload
payload = {
'image': image_base64,
'shape': img.shape,
'threshold': threshold,
}
headers = {
'Authorization': 'Bearer ' + DL4EO_API_KEY,
'Content-Type': 'application/json' # Adjust the content type as needed
}
# Send the POST request to the API endpoint with the image file as binary payload
response = requests.post(DL4EO_API_URL, json=payload, headers=headers)
# Check the response status
if response.status_code != 200:
raise Exception(
f"Received status code={response.status_code} in inference API"
)
json_data = json.loads(response.content)
image_data = json_data['image']
shape = json_data['shape']
infos = json_data['infos']
duration = json_data['duration']
img_data_in = base64.b64decode(json_data['image'])
np_img = np.frombuffer(img_data_in, dtype=np.uint8).reshape(shape)
pil_img = Image.fromarray(np_img)
return pil_img, shape, infos, duration
# Define example images and their true labels for users to choose from
example_data = [
["./demo/demo.jpg", 0.8],
["./demo/dota_demo.jpg", 0.8],
["./demo/Satellite_Image_Marina_New_Zealand.jpg", 0.8],
["./demo/Pleiades_HD15_Miami_Marina.jpg", 0.8],
["./demo/SPOT_Storage.jpg", 0.8],
["./demo/airport01.jpg", 0.8],
["./demo/Pleiades_Neo_Tucson_USA.jpg", 0.8],
# Add more example images and labels as needed
]
# Define CSS for some elements
css = """
.image-preview {
height: 820px !important;
width: 800px !important;
}
"""
TITLE = "Oriented bounding boxes detection on Optical Satellite images"
# Define the Gradio Interface
demo = gr.Blocks(title=TITLE, css=css).queue()
with demo:
gr.Markdown(f"<h1><center>{TITLE}<center><h1>")
with gr.Row():
with gr.Column(scale=0):
input_image = gr.Image(type="pil", interactive=True)
run_button = gr.Button(value="Run")
with gr.Accordion("Advanced options", open=True):
threshold = gr.Slider(label="Confidence threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.01)
dimensions = gr.Textbox(label="Image size", interactive=False)
detections = gr.Textbox(label="Predicted objects", interactive=False)
stopwatch = gr.Number(label="Execution time (sec.)", interactive=False, precision=3)
with gr.Column(scale=2):
output_image = gr.Image(type="pil", elem_classes='image-preview', interactive=False)
run_button.click(fn=predict_image, inputs=[input_image, threshold], outputs=[output_image, dimensions, detections, stopwatch])
gr.Examples(
examples=example_data,
inputs = [input_image, threshold],
outputs = [output_image, dimensions, detections, stopwatch],
fn=predict_image,
cache_examples=True,
label='Try these images!'
)
gr.Markdown("""
<p>This demo is provided by <a href='https://www.linkedin.com/in/faudi/'>Jeff Faudi</a> and <a href='https://www.dl4eo.com/'>DL4EO</a>.
This model is based on the <a href='https://github.com/open-mmlab/mmrotate'>MMRotate framework</a> which provides oriented bounding boxes.
We believe that oriented bouding boxes are better suited for detection in satellite images. This model has been trained on the
<a href='https://captain-whu.github.io/DOTA/dataset.html'>DOTA dataset</a> which contains 15 classes: plane, ship, storage tank,
baseball diamond, tennis court, basketball court, ground track field, harbor, bridge, large vehicle, small vehicle, helicopter,
roundabout, soccer ball field and swimming pool. </p><p>The associated licenses are
<a href='https://about.google/brand-resource-center/products-and-services/geo-guidelines/#google-earth-web-and-apps'>GoogleEarth fair use</a>
and <a href='https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en'>CC-BY-SA-NC</a>. This demonstration CANNOT be used for commercial puposes.
Please contact <a href='mailto:jeff@dl4eo.com'>me</a> for more information on how you could get access to a commercial grade model or API. </p>
""")
demo.launch(
inline=False,
show_api=False,
debug=False
)