Spaces:
Build error
Build error
| import chainlit.data as cl_data | |
| import asyncio | |
| from modules.config.constants import ( | |
| LITERAL_API_KEY_LOGGING, | |
| LITERAL_API_URL, | |
| ) | |
| from modules.chat_processor.literal_ai import CustomLiteralDataLayer | |
| import json | |
| import yaml | |
| from typing import Any, Dict, no_type_check | |
| import chainlit as cl | |
| from modules.chat.llm_tutor import LLMTutor | |
| from modules.chat.helpers import ( | |
| get_sources, | |
| get_history_chat_resume, | |
| get_history_setup_llm, | |
| get_last_config, | |
| ) | |
| import copy | |
| from typing import Optional | |
| from chainlit.types import ThreadDict | |
| import time | |
| import base64 | |
| USER_TIMEOUT = 60_000 | |
| SYSTEM = "System" | |
| LLM = "AI Tutor" | |
| AGENT = "Agent" | |
| YOU = "User" | |
| ERROR = "Error" | |
| with open("modules/config/config.yml", "r") as f: | |
| config = yaml.safe_load(f) | |
| async def setup_data_layer(): | |
| """ | |
| Set up the data layer for chat logging. | |
| """ | |
| if config["chat_logging"]["log_chat"]: | |
| data_layer = CustomLiteralDataLayer( | |
| api_key=LITERAL_API_KEY_LOGGING, server=LITERAL_API_URL | |
| ) | |
| else: | |
| data_layer = None | |
| return data_layer | |
| class Chatbot: | |
| def __init__(self, config): | |
| """ | |
| Initialize the Chatbot class. | |
| """ | |
| self.config = config | |
| async def _load_config(self): | |
| """ | |
| Load the configuration from a YAML file. | |
| """ | |
| with open("modules/config/config.yml", "r") as f: | |
| return yaml.safe_load(f) | |
| async def setup_llm(self): | |
| """ | |
| Set up the LLM with the provided settings. Update the configuration and initialize the LLM tutor. | |
| #TODO: Clean this up. | |
| """ | |
| start_time = time.time() | |
| llm_settings = cl.user_session.get("llm_settings", {}) | |
| ( | |
| chat_profile, | |
| retriever_method, | |
| memory_window, | |
| llm_style, | |
| generate_follow_up, | |
| chunking_mode, | |
| ) = ( | |
| llm_settings.get("chat_model"), | |
| llm_settings.get("retriever_method"), | |
| llm_settings.get("memory_window"), | |
| llm_settings.get("llm_style"), | |
| llm_settings.get("follow_up_questions"), | |
| llm_settings.get("chunking_mode"), | |
| ) | |
| chain = cl.user_session.get("chain") | |
| memory_list = cl.user_session.get( | |
| "memory", | |
| ( | |
| list(chain.store.values())[0].messages | |
| if len(chain.store.values()) > 0 | |
| else [] | |
| ), | |
| ) | |
| conversation_list = get_history_setup_llm(memory_list) | |
| old_config = copy.deepcopy(self.config) | |
| self.config["vectorstore"]["db_option"] = retriever_method | |
| self.config["llm_params"]["memory_window"] = memory_window | |
| self.config["llm_params"]["llm_style"] = llm_style | |
| self.config["llm_params"]["llm_loader"] = chat_profile | |
| self.config["llm_params"]["generate_follow_up"] = generate_follow_up | |
| self.config["splitter_options"]["chunking_mode"] = chunking_mode | |
| self.llm_tutor.update_llm( | |
| old_config, self.config | |
| ) # update only llm attributes that are changed | |
| self.chain = self.llm_tutor.qa_bot( | |
| memory=conversation_list, | |
| ) | |
| cl.user_session.set("chain", self.chain) | |
| cl.user_session.set("llm_tutor", self.llm_tutor) | |
| print("Time taken to setup LLM: ", time.time() - start_time) | |
| async def update_llm(self, new_settings: Dict[str, Any]): | |
| """ | |
| Update the LLM settings and reinitialize the LLM with the new settings. | |
| Args: | |
| new_settings (Dict[str, Any]): The new settings to update. | |
| """ | |
| cl.user_session.set("llm_settings", new_settings) | |
| await self.inform_llm_settings() | |
| await self.setup_llm() | |
| async def make_llm_settings_widgets(self, config=None): | |
| """ | |
| Create and send the widgets for LLM settings configuration. | |
| Args: | |
| config: The configuration to use for setting up the widgets. | |
| """ | |
| config = config or self.config | |
| await cl.ChatSettings( | |
| [ | |
| cl.input_widget.Select( | |
| id="chat_model", | |
| label="Model Name (Default GPT-3)", | |
| values=["local_llm", "gpt-3.5-turbo-1106", "gpt-4", "gpt-4o-mini"], | |
| initial_index=[ | |
| "local_llm", | |
| "gpt-3.5-turbo-1106", | |
| "gpt-4", | |
| "gpt-4o-mini", | |
| ].index(config["llm_params"]["llm_loader"]), | |
| ), | |
| cl.input_widget.Select( | |
| id="retriever_method", | |
| label="Retriever (Default FAISS)", | |
| values=["FAISS", "Chroma", "RAGatouille", "RAPTOR"], | |
| initial_index=["FAISS", "Chroma", "RAGatouille", "RAPTOR"].index( | |
| config["vectorstore"]["db_option"] | |
| ), | |
| ), | |
| cl.input_widget.Slider( | |
| id="memory_window", | |
| label="Memory Window (Default 3)", | |
| initial=3, | |
| min=0, | |
| max=10, | |
| step=1, | |
| ), | |
| cl.input_widget.Switch( | |
| id="view_sources", label="View Sources", initial=False | |
| ), | |
| cl.input_widget.Switch( | |
| id="stream_response", | |
| label="Stream response", | |
| initial=config["llm_params"]["stream"], | |
| ), | |
| cl.input_widget.Select( | |
| id="chunking_mode", | |
| label="Chunking mode", | |
| values=["fixed", "semantic"], | |
| initial_index=1, | |
| ), | |
| cl.input_widget.Switch( | |
| id="follow_up_questions", | |
| label="Generate follow up questions", | |
| initial=False, | |
| ), | |
| cl.input_widget.Select( | |
| id="llm_style", | |
| label="Type of Conversation (Default Normal)", | |
| values=["Normal", "ELI5"], | |
| initial_index=0, | |
| ), | |
| ] | |
| ).send() | |
| async def inform_llm_settings(self): | |
| """ | |
| Inform the user about the updated LLM settings and display them as a message. | |
| """ | |
| llm_settings: Dict[str, Any] = cl.user_session.get("llm_settings", {}) | |
| llm_tutor = cl.user_session.get("llm_tutor") | |
| settings_dict = { | |
| "model": llm_settings.get("chat_model"), | |
| "retriever": llm_settings.get("retriever_method"), | |
| "memory_window": llm_settings.get("memory_window"), | |
| "num_docs_in_db": ( | |
| len(llm_tutor.vector_db) | |
| if llm_tutor and hasattr(llm_tutor, "vector_db") | |
| else 0 | |
| ), | |
| "view_sources": llm_settings.get("view_sources"), | |
| "follow_up_questions": llm_settings.get("follow_up_questions"), | |
| } | |
| await cl.Message( | |
| author=SYSTEM, | |
| content="LLM settings have been updated. You can continue with your Query!", | |
| elements=[ | |
| cl.Text( | |
| name="settings", | |
| display="side", | |
| content=json.dumps(settings_dict, indent=4), | |
| language="json", | |
| ), | |
| ], | |
| ).send() | |
| async def set_starters(self): | |
| """ | |
| Set starter messages for the chatbot. | |
| """ | |
| # Return Starters only if the chat is new | |
| try: | |
| thread = cl_data._data_layer.get_thread( | |
| cl.context.session.thread_id | |
| ) # see if the thread has any steps | |
| if thread.steps or len(thread.steps) > 0: | |
| return None | |
| except Exception as e: | |
| print(e) | |
| return [ | |
| cl.Starter( | |
| label="recording on CNNs?", | |
| message="Where can I find the recording for the lecture on Transformers?", | |
| icon="/public/adv-screen-recorder-svgrepo-com.svg", | |
| ), | |
| cl.Starter( | |
| label="where's the slides?", | |
| message="When are the lectures? I can't find the schedule.", | |
| icon="/public/alarmy-svgrepo-com.svg", | |
| ), | |
| cl.Starter( | |
| label="Due Date?", | |
| message="When is the final project due?", | |
| icon="/public/calendar-samsung-17-svgrepo-com.svg", | |
| ), | |
| cl.Starter( | |
| label="Explain backprop.", | |
| message="I didn't understand the math behind backprop, could you explain it?", | |
| icon="/public/acastusphoton-svgrepo-com.svg", | |
| ), | |
| ] | |
| def rename(self, orig_author: str): | |
| """ | |
| Rename the original author to a more user-friendly name. | |
| Args: | |
| orig_author (str): The original author's name. | |
| Returns: | |
| str: The renamed author. | |
| """ | |
| rename_dict = {"Chatbot": LLM} | |
| return rename_dict.get(orig_author, orig_author) | |
| async def start(self, config=None): | |
| """ | |
| Start the chatbot, initialize settings widgets, | |
| and display and load previous conversation if chat logging is enabled. | |
| """ | |
| start_time = time.time() | |
| self.config = ( | |
| await self._load_config() if config is None else config | |
| ) # Reload the configuration on chat resume | |
| await self.make_llm_settings_widgets(self.config) # Reload the settings widgets | |
| await self.make_llm_settings_widgets(self.config) | |
| user = cl.user_session.get("user") | |
| try: | |
| self.user = { | |
| "user_id": user.identifier, | |
| "session_id": cl.context.session.thread_id, | |
| } | |
| except Exception as e: | |
| print(e) | |
| self.user = { | |
| "user_id": "guest", | |
| "session_id": cl.context.session.thread_id, | |
| } | |
| memory = cl.user_session.get("memory", []) | |
| cl.user_session.set("user", self.user) | |
| self.llm_tutor = LLMTutor(self.config, user=self.user) | |
| self.chain = self.llm_tutor.qa_bot( | |
| memory=memory, | |
| ) | |
| self.question_generator = self.llm_tutor.question_generator | |
| cl.user_session.set("llm_tutor", self.llm_tutor) | |
| cl.user_session.set("chain", self.chain) | |
| print("Time taken to start LLM: ", time.time() - start_time) | |
| async def stream_response(self, response): | |
| """ | |
| Stream the response from the LLM. | |
| Args: | |
| response: The response from the LLM. | |
| """ | |
| msg = cl.Message(content="") | |
| await msg.send() | |
| output = {} | |
| for chunk in response: | |
| if "answer" in chunk: | |
| await msg.stream_token(chunk["answer"]) | |
| for key in chunk: | |
| if key not in output: | |
| output[key] = chunk[key] | |
| else: | |
| output[key] += chunk[key] | |
| return output | |
| async def main(self, message): | |
| """ | |
| Process and Display the Conversation. | |
| Args: | |
| message: The incoming chat message. | |
| """ | |
| start_time = time.time() | |
| chain = cl.user_session.get("chain") | |
| llm_settings = cl.user_session.get("llm_settings", {}) | |
| view_sources = llm_settings.get("view_sources", False) | |
| stream = llm_settings.get("stream_response", False) | |
| stream = False # Fix streaming | |
| user_query_dict = {"input": message.content} | |
| # Define the base configuration | |
| chain_config = { | |
| "configurable": { | |
| "user_id": self.user["user_id"], | |
| "conversation_id": self.user["session_id"], | |
| "memory_window": self.config["llm_params"]["memory_window"], | |
| }, | |
| "callbacks": ( | |
| [cl.LangchainCallbackHandler()] | |
| if cl_data._data_layer and self.config["chat_logging"]["callbacks"] | |
| else None | |
| ), | |
| } | |
| if stream: | |
| res = chain.stream(user_query=user_query_dict, config=chain_config) | |
| res = await self.stream_response(res) | |
| else: | |
| res = await chain.invoke( | |
| user_query=user_query_dict, | |
| config=chain_config, | |
| ) | |
| answer = res.get("answer", res.get("result")) | |
| answer_with_sources, source_elements, sources_dict = get_sources( | |
| res, answer, stream=stream, view_sources=view_sources | |
| ) | |
| answer_with_sources = answer_with_sources.replace("$$", "$") | |
| print("Time taken to process the message: ", time.time() - start_time) | |
| actions = [] | |
| if self.config["llm_params"]["generate_follow_up"]: | |
| start_time = time.time() | |
| config = { | |
| "callbacks": ( | |
| [cl.LangchainCallbackHandler()] | |
| if cl_data._data_layer and self.config["chat_logging"]["callbacks"] | |
| else None | |
| ) | |
| } | |
| list_of_questions = await self.question_generator.generate_questions( | |
| query=user_query_dict["input"], | |
| response=answer, | |
| chat_history=res.get("chat_history"), | |
| context=res.get("context"), | |
| config=config, | |
| ) | |
| for question in list_of_questions: | |
| actions.append( | |
| cl.Action( | |
| name="follow up question", | |
| value="example_value", | |
| description=question, | |
| label=question, | |
| ) | |
| ) | |
| print("Time taken to generate questions: ", time.time() - start_time) | |
| await cl.Message( | |
| content=answer_with_sources, | |
| elements=source_elements, | |
| author=LLM, | |
| actions=actions, | |
| metadata=self.config, | |
| ).send() | |
| async def on_chat_resume(self, thread: ThreadDict): | |
| thread_config = None | |
| steps = thread["steps"] | |
| k = self.config["llm_params"][ | |
| "memory_window" | |
| ] # on resume, alwyas use the default memory window | |
| conversation_list = get_history_chat_resume(steps, k, SYSTEM, LLM) | |
| thread_config = get_last_config( | |
| steps | |
| ) # TODO: Returns None for now - which causes config to be reloaded with default values | |
| cl.user_session.set("memory", conversation_list) | |
| await self.start(config=thread_config) | |
| # @cl.oauth_callback | |
| # def auth_callback( | |
| # provider_id: str, | |
| # token: str, | |
| # raw_user_data: Dict[str, str], | |
| # default_user: cl.User, | |
| # ) -> Optional[cl.User]: | |
| # return default_user | |
| def header_auth_callback(headers: dict) -> Optional[cl.User]: | |
| print("\n\n\nI am here\n\n\n") | |
| # try: # TODO: Add try-except block after testing | |
| # TODO: Implement to get the user information from the headers (not the cookie) | |
| cookie = headers.get("cookie") # gets back a str | |
| # Create a dictionary from the pairs | |
| cookie_dict = {} | |
| for pair in cookie.split("; "): | |
| key, value = pair.split("=", 1) | |
| # Strip surrounding quotes if present | |
| cookie_dict[key] = value.strip('"') | |
| decoded_user_info = base64.b64decode( | |
| cookie_dict.get("X-User-Info", "") | |
| ).decode() | |
| decoded_user_info = json.loads(decoded_user_info) | |
| return cl.User( | |
| identifier=decoded_user_info["email"], | |
| metadata={ | |
| "name": decoded_user_info["name"], | |
| "avatar": decoded_user_info["profile_image"], | |
| }, | |
| ) | |
| async def on_follow_up(self, action: cl.Action): | |
| message = await cl.Message( | |
| content=action.description, | |
| type="user_message", | |
| author=self.user["user_id"], | |
| ).send() | |
| async with cl.Step( | |
| name="on_follow_up", type="run", parent_id=message.id | |
| ) as step: | |
| await self.main(message) | |
| step.output = message.content | |
| chatbot = Chatbot(config=config) | |
| async def start_app(): | |
| cl_data._data_layer = await setup_data_layer() | |
| chatbot.literal_client = cl_data._data_layer.client if cl_data._data_layer else None | |
| cl.set_starters(chatbot.set_starters) | |
| cl.author_rename(chatbot.rename) | |
| cl.on_chat_start(chatbot.start) | |
| cl.on_chat_resume(chatbot.on_chat_resume) | |
| cl.on_message(chatbot.main) | |
| cl.on_settings_update(chatbot.update_llm) | |
| cl.action_callback("follow up question")(chatbot.on_follow_up) | |
| loop = asyncio.get_event_loop() | |
| if loop.is_running(): | |
| asyncio.ensure_future(start_app()) | |
| else: | |
| asyncio.run(start_app()) | |