dkondic commited on
Commit
1c61d0a
·
verified ·
1 Parent(s): 843865b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +133 -133
app.py CHANGED
@@ -1,133 +1,133 @@
1
- import os
2
- import shutil
3
- import gradio as gr
4
- from transformers import ReactCodeAgent, HfEngine, Tool
5
- import pandas as pd
6
-
7
- from gradio import Chatbot
8
- from streaming import stream_to_gradio
9
- from huggingface_hub import login
10
- from gradio.data_classes import FileData
11
-
12
- login(os.getenv("HUGGINGFACEHUB_API_TOKEN"))
13
-
14
- llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct")
15
-
16
- agent = ReactCodeAgent(
17
- tools=[],
18
- llm_engine=llm_engine,
19
- additional_authorized_imports=["numpy", "pandas", "matplotlib.pyplot", "seaborn", "scipy.stats"],
20
- max_iterations=10,
21
- )
22
-
23
- base_prompt = """You are an expert data analyst.
24
- According to the features you have and the data structure given below, determine which feature should be the target.
25
- Then list 3 interesting questions that could be asked on this data, for instance about specific correlations with target variable.
26
- Then answer these questions one by one, by finding the relevant numbers.
27
- Meanwhile, plot some figures using matplotlib/seaborn and save them to the (already existing) folder './figures/': take care to clear each figure with plt.clf() before doing another plot.
28
-
29
- In your final answer: summarize these correlations and trends
30
- After each number derive real worlds insights, for instance: "Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter".
31
- Your final answer should be a long string with at least 3 numbered and detailed parts.
32
-
33
- Structure of the data:
34
- {structure_notes}
35
-
36
- The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
37
- DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
38
- """
39
-
40
- example_notes="""This data is about the Titanic wreck in 1912.
41
- The target figure is the survival of passengers, notes by 'Survived'
42
- pclass: A proxy for socio-economic status (SES)
43
- 1st = Upper
44
- 2nd = Middle
45
- 3rd = Lower
46
- age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5
47
- sibsp: The dataset defines family relations in this way...
48
- Sibling = brother, sister, stepbrother, stepsister
49
- Spouse = husband, wife (mistresses and fiancés were ignored)
50
- parch: The dataset defines family relations in this way...
51
- Parent = mother, father
52
- Child = daughter, son, stepdaughter, stepson
53
- Some children travelled only with a nanny, therefore parch=0 for them."""
54
-
55
- def get_images_in_directory(directory):
56
- image_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff'}
57
-
58
- image_files = []
59
- for root, dirs, files in os.walk(directory):
60
- for file in files:
61
- if os.path.splitext(file)[1].lower() in image_extensions:
62
- image_files.append(os.path.join(root, file))
63
- return image_files
64
-
65
- def interact_with_agent(file_input, additional_notes):
66
- shutil.rmtree("./figures")
67
- os.makedirs("./figures")
68
-
69
- data_file = pd.read_csv(file_input)
70
- data_structure_notes = f"""- Description (output of .describe()):
71
- {data_file.describe()}
72
- - Columns with dtypes:
73
- {data_file.dtypes}"""
74
-
75
- prompt = base_prompt.format(structure_notes=data_structure_notes)
76
-
77
- if additional_notes and len(additional_notes) > 0:
78
- prompt += "\nAdditional notes on the data:\n" + additional_notes
79
-
80
- messages = [gr.ChatMessage(role="user", content=prompt)]
81
- yield messages + [
82
- gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")
83
- ]
84
-
85
- plot_image_paths = {}
86
- for msg in stream_to_gradio(agent, prompt, data_file=data_file):
87
- messages.append(msg)
88
- for image_path in get_images_in_directory("./figures"):
89
- if image_path not in plot_image_paths:
90
- image_message = gr.ChatMessage(
91
- role="assistant",
92
- content=FileData(path=image_path, mime_type="image/png"),
93
- )
94
- plot_image_paths[image_path] = True
95
- messages.append(image_message)
96
- yield messages + [
97
- gr.ChatMessage(role="assistant", content="⏳ _Still processing..._")
98
- ]
99
- yield messages
100
-
101
-
102
- with gr.Blocks(
103
- theme=gr.themes.Soft(
104
- primary_hue=gr.themes.colors.yellow,
105
- secondary_hue=gr.themes.colors.blue,
106
- )
107
- ) as demo:
108
- gr.Markdown("""# Llama-3.1 Data analyst 📊🤔
109
-
110
- Drop a `.csv` file below, add notes to describe this data if needed, and **Llama-3.1-70B will analyze the file content and draw figures for you!**""")
111
- file_input = gr.File(label="Your file to analyze")
112
- text_input = gr.Textbox(
113
- label="Additional notes to support the analysis"
114
- )
115
- submit = gr.Button("Run analysis!", variant="primary")
116
- chatbot = gr.Chatbot(
117
- label="Data Analyst Agent",
118
- type="messages",
119
- avatar_images=(
120
- None,
121
- "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
122
- ),
123
- )
124
- gr.Examples(
125
- examples=[["./example/titanic.csv", example_notes]],
126
- inputs=[file_input, text_input],
127
- cache_examples=False
128
- )
129
-
130
- submit.click(interact_with_agent, [file_input, text_input], [chatbot])
131
-
132
- if __name__ == "__main__":
133
- demo.launch()
 
1
+ import os
2
+ import shutil
3
+ import gradio as gr
4
+ from transformers import ReactCodeAgent, HfEngine, Tool
5
+ import pandas as pd
6
+
7
+ from gradio import Chatbot
8
+ from streaming import stream_to_gradio
9
+ from huggingface_hub import login
10
+ from gradio.data_classes import FileData
11
+
12
+ login(os.getenv("HUGGINGFACEHUB_API_TOKEN"),add_to_git_credential:True)
13
+
14
+ llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct")
15
+
16
+ agent = ReactCodeAgent(
17
+ tools=[],
18
+ llm_engine=llm_engine,
19
+ additional_authorized_imports=["numpy", "pandas", "matplotlib.pyplot", "seaborn", "scipy.stats"],
20
+ max_iterations=10,
21
+ )
22
+
23
+ base_prompt = """You are an expert data analyst.
24
+ According to the features you have and the data structure given below, determine which feature should be the target.
25
+ Then list 3 interesting questions that could be asked on this data, for instance about specific correlations with target variable.
26
+ Then answer these questions one by one, by finding the relevant numbers.
27
+ Meanwhile, plot some figures using matplotlib/seaborn and save them to the (already existing) folder './figures/': take care to clear each figure with plt.clf() before doing another plot.
28
+
29
+ In your final answer: summarize these correlations and trends
30
+ After each number derive real worlds insights, for instance: "Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter".
31
+ Your final answer should be a long string with at least 3 numbered and detailed parts.
32
+
33
+ Structure of the data:
34
+ {structure_notes}
35
+
36
+ The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
37
+ DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
38
+ """
39
+
40
+ example_notes="""This data is about the Titanic wreck in 1912.
41
+ The target figure is the survival of passengers, notes by 'Survived'
42
+ pclass: A proxy for socio-economic status (SES)
43
+ 1st = Upper
44
+ 2nd = Middle
45
+ 3rd = Lower
46
+ age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5
47
+ sibsp: The dataset defines family relations in this way...
48
+ Sibling = brother, sister, stepbrother, stepsister
49
+ Spouse = husband, wife (mistresses and fiancés were ignored)
50
+ parch: The dataset defines family relations in this way...
51
+ Parent = mother, father
52
+ Child = daughter, son, stepdaughter, stepson
53
+ Some children travelled only with a nanny, therefore parch=0 for them."""
54
+
55
+ def get_images_in_directory(directory):
56
+ image_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff'}
57
+
58
+ image_files = []
59
+ for root, dirs, files in os.walk(directory):
60
+ for file in files:
61
+ if os.path.splitext(file)[1].lower() in image_extensions:
62
+ image_files.append(os.path.join(root, file))
63
+ return image_files
64
+
65
+ def interact_with_agent(file_input, additional_notes):
66
+ shutil.rmtree("./figures")
67
+ os.makedirs("./figures")
68
+
69
+ data_file = pd.read_csv(file_input)
70
+ data_structure_notes = f"""- Description (output of .describe()):
71
+ {data_file.describe()}
72
+ - Columns with dtypes:
73
+ {data_file.dtypes}"""
74
+
75
+ prompt = base_prompt.format(structure_notes=data_structure_notes)
76
+
77
+ if additional_notes and len(additional_notes) > 0:
78
+ prompt += "\nAdditional notes on the data:\n" + additional_notes
79
+
80
+ messages = [gr.ChatMessage(role="user", content=prompt)]
81
+ yield messages + [
82
+ gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")
83
+ ]
84
+
85
+ plot_image_paths = {}
86
+ for msg in stream_to_gradio(agent, prompt, data_file=data_file):
87
+ messages.append(msg)
88
+ for image_path in get_images_in_directory("./figures"):
89
+ if image_path not in plot_image_paths:
90
+ image_message = gr.ChatMessage(
91
+ role="assistant",
92
+ content=FileData(path=image_path, mime_type="image/png"),
93
+ )
94
+ plot_image_paths[image_path] = True
95
+ messages.append(image_message)
96
+ yield messages + [
97
+ gr.ChatMessage(role="assistant", content="⏳ _Still processing..._")
98
+ ]
99
+ yield messages
100
+
101
+
102
+ with gr.Blocks(
103
+ theme=gr.themes.Soft(
104
+ primary_hue=gr.themes.colors.yellow,
105
+ secondary_hue=gr.themes.colors.blue,
106
+ )
107
+ ) as demo:
108
+ gr.Markdown("""# Llama-3.1 Data analyst 📊🤔
109
+
110
+ Drop a `.csv` file below, add notes to describe this data if needed, and **Llama-3.1-70B will analyze the file content and draw figures for you!**""")
111
+ file_input = gr.File(label="Your file to analyze")
112
+ text_input = gr.Textbox(
113
+ label="Additional notes to support the analysis"
114
+ )
115
+ submit = gr.Button("Run analysis!", variant="primary")
116
+ chatbot = gr.Chatbot(
117
+ label="Data Analyst Agent",
118
+ type="messages",
119
+ avatar_images=(
120
+ None,
121
+ "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
122
+ ),
123
+ )
124
+ gr.Examples(
125
+ examples=[["./example/titanic.csv", example_notes]],
126
+ inputs=[file_input, text_input],
127
+ cache_examples=False
128
+ )
129
+
130
+ submit.click(interact_with_agent, [file_input, text_input], [chatbot])
131
+
132
+ if __name__ == "__main__":
133
+ demo.launch()