Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,133 +1,133 @@
|
|
1 |
-
import os
|
2 |
-
import shutil
|
3 |
-
import gradio as gr
|
4 |
-
from transformers import ReactCodeAgent, HfEngine, Tool
|
5 |
-
import pandas as pd
|
6 |
-
|
7 |
-
from gradio import Chatbot
|
8 |
-
from streaming import stream_to_gradio
|
9 |
-
from huggingface_hub import login
|
10 |
-
from gradio.data_classes import FileData
|
11 |
-
|
12 |
-
login(os.getenv("HUGGINGFACEHUB_API_TOKEN"))
|
13 |
-
|
14 |
-
llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct")
|
15 |
-
|
16 |
-
agent = ReactCodeAgent(
|
17 |
-
tools=[],
|
18 |
-
llm_engine=llm_engine,
|
19 |
-
additional_authorized_imports=["numpy", "pandas", "matplotlib.pyplot", "seaborn", "scipy.stats"],
|
20 |
-
max_iterations=10,
|
21 |
-
)
|
22 |
-
|
23 |
-
base_prompt = """You are an expert data analyst.
|
24 |
-
According to the features you have and the data structure given below, determine which feature should be the target.
|
25 |
-
Then list 3 interesting questions that could be asked on this data, for instance about specific correlations with target variable.
|
26 |
-
Then answer these questions one by one, by finding the relevant numbers.
|
27 |
-
Meanwhile, plot some figures using matplotlib/seaborn and save them to the (already existing) folder './figures/': take care to clear each figure with plt.clf() before doing another plot.
|
28 |
-
|
29 |
-
In your final answer: summarize these correlations and trends
|
30 |
-
After each number derive real worlds insights, for instance: "Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter".
|
31 |
-
Your final answer should be a long string with at least 3 numbered and detailed parts.
|
32 |
-
|
33 |
-
Structure of the data:
|
34 |
-
{structure_notes}
|
35 |
-
|
36 |
-
The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
|
37 |
-
DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
|
38 |
-
"""
|
39 |
-
|
40 |
-
example_notes="""This data is about the Titanic wreck in 1912.
|
41 |
-
The target figure is the survival of passengers, notes by 'Survived'
|
42 |
-
pclass: A proxy for socio-economic status (SES)
|
43 |
-
1st = Upper
|
44 |
-
2nd = Middle
|
45 |
-
3rd = Lower
|
46 |
-
age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5
|
47 |
-
sibsp: The dataset defines family relations in this way...
|
48 |
-
Sibling = brother, sister, stepbrother, stepsister
|
49 |
-
Spouse = husband, wife (mistresses and fiancés were ignored)
|
50 |
-
parch: The dataset defines family relations in this way...
|
51 |
-
Parent = mother, father
|
52 |
-
Child = daughter, son, stepdaughter, stepson
|
53 |
-
Some children travelled only with a nanny, therefore parch=0 for them."""
|
54 |
-
|
55 |
-
def get_images_in_directory(directory):
|
56 |
-
image_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff'}
|
57 |
-
|
58 |
-
image_files = []
|
59 |
-
for root, dirs, files in os.walk(directory):
|
60 |
-
for file in files:
|
61 |
-
if os.path.splitext(file)[1].lower() in image_extensions:
|
62 |
-
image_files.append(os.path.join(root, file))
|
63 |
-
return image_files
|
64 |
-
|
65 |
-
def interact_with_agent(file_input, additional_notes):
|
66 |
-
shutil.rmtree("./figures")
|
67 |
-
os.makedirs("./figures")
|
68 |
-
|
69 |
-
data_file = pd.read_csv(file_input)
|
70 |
-
data_structure_notes = f"""- Description (output of .describe()):
|
71 |
-
{data_file.describe()}
|
72 |
-
- Columns with dtypes:
|
73 |
-
{data_file.dtypes}"""
|
74 |
-
|
75 |
-
prompt = base_prompt.format(structure_notes=data_structure_notes)
|
76 |
-
|
77 |
-
if additional_notes and len(additional_notes) > 0:
|
78 |
-
prompt += "\nAdditional notes on the data:\n" + additional_notes
|
79 |
-
|
80 |
-
messages = [gr.ChatMessage(role="user", content=prompt)]
|
81 |
-
yield messages + [
|
82 |
-
gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")
|
83 |
-
]
|
84 |
-
|
85 |
-
plot_image_paths = {}
|
86 |
-
for msg in stream_to_gradio(agent, prompt, data_file=data_file):
|
87 |
-
messages.append(msg)
|
88 |
-
for image_path in get_images_in_directory("./figures"):
|
89 |
-
if image_path not in plot_image_paths:
|
90 |
-
image_message = gr.ChatMessage(
|
91 |
-
role="assistant",
|
92 |
-
content=FileData(path=image_path, mime_type="image/png"),
|
93 |
-
)
|
94 |
-
plot_image_paths[image_path] = True
|
95 |
-
messages.append(image_message)
|
96 |
-
yield messages + [
|
97 |
-
gr.ChatMessage(role="assistant", content="⏳ _Still processing..._")
|
98 |
-
]
|
99 |
-
yield messages
|
100 |
-
|
101 |
-
|
102 |
-
with gr.Blocks(
|
103 |
-
theme=gr.themes.Soft(
|
104 |
-
primary_hue=gr.themes.colors.yellow,
|
105 |
-
secondary_hue=gr.themes.colors.blue,
|
106 |
-
)
|
107 |
-
) as demo:
|
108 |
-
gr.Markdown("""# Llama-3.1 Data analyst 📊🤔
|
109 |
-
|
110 |
-
Drop a `.csv` file below, add notes to describe this data if needed, and **Llama-3.1-70B will analyze the file content and draw figures for you!**""")
|
111 |
-
file_input = gr.File(label="Your file to analyze")
|
112 |
-
text_input = gr.Textbox(
|
113 |
-
label="Additional notes to support the analysis"
|
114 |
-
)
|
115 |
-
submit = gr.Button("Run analysis!", variant="primary")
|
116 |
-
chatbot = gr.Chatbot(
|
117 |
-
label="Data Analyst Agent",
|
118 |
-
type="messages",
|
119 |
-
avatar_images=(
|
120 |
-
None,
|
121 |
-
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
|
122 |
-
),
|
123 |
-
)
|
124 |
-
gr.Examples(
|
125 |
-
examples=[["./example/titanic.csv", example_notes]],
|
126 |
-
inputs=[file_input, text_input],
|
127 |
-
cache_examples=False
|
128 |
-
)
|
129 |
-
|
130 |
-
submit.click(interact_with_agent, [file_input, text_input], [chatbot])
|
131 |
-
|
132 |
-
if __name__ == "__main__":
|
133 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import ReactCodeAgent, HfEngine, Tool
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
from gradio import Chatbot
|
8 |
+
from streaming import stream_to_gradio
|
9 |
+
from huggingface_hub import login
|
10 |
+
from gradio.data_classes import FileData
|
11 |
+
|
12 |
+
login(os.getenv("HUGGINGFACEHUB_API_TOKEN"),add_to_git_credential:True)
|
13 |
+
|
14 |
+
llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct")
|
15 |
+
|
16 |
+
agent = ReactCodeAgent(
|
17 |
+
tools=[],
|
18 |
+
llm_engine=llm_engine,
|
19 |
+
additional_authorized_imports=["numpy", "pandas", "matplotlib.pyplot", "seaborn", "scipy.stats"],
|
20 |
+
max_iterations=10,
|
21 |
+
)
|
22 |
+
|
23 |
+
base_prompt = """You are an expert data analyst.
|
24 |
+
According to the features you have and the data structure given below, determine which feature should be the target.
|
25 |
+
Then list 3 interesting questions that could be asked on this data, for instance about specific correlations with target variable.
|
26 |
+
Then answer these questions one by one, by finding the relevant numbers.
|
27 |
+
Meanwhile, plot some figures using matplotlib/seaborn and save them to the (already existing) folder './figures/': take care to clear each figure with plt.clf() before doing another plot.
|
28 |
+
|
29 |
+
In your final answer: summarize these correlations and trends
|
30 |
+
After each number derive real worlds insights, for instance: "Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter".
|
31 |
+
Your final answer should be a long string with at least 3 numbered and detailed parts.
|
32 |
+
|
33 |
+
Structure of the data:
|
34 |
+
{structure_notes}
|
35 |
+
|
36 |
+
The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
|
37 |
+
DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
|
38 |
+
"""
|
39 |
+
|
40 |
+
example_notes="""This data is about the Titanic wreck in 1912.
|
41 |
+
The target figure is the survival of passengers, notes by 'Survived'
|
42 |
+
pclass: A proxy for socio-economic status (SES)
|
43 |
+
1st = Upper
|
44 |
+
2nd = Middle
|
45 |
+
3rd = Lower
|
46 |
+
age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5
|
47 |
+
sibsp: The dataset defines family relations in this way...
|
48 |
+
Sibling = brother, sister, stepbrother, stepsister
|
49 |
+
Spouse = husband, wife (mistresses and fiancés were ignored)
|
50 |
+
parch: The dataset defines family relations in this way...
|
51 |
+
Parent = mother, father
|
52 |
+
Child = daughter, son, stepdaughter, stepson
|
53 |
+
Some children travelled only with a nanny, therefore parch=0 for them."""
|
54 |
+
|
55 |
+
def get_images_in_directory(directory):
|
56 |
+
image_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff'}
|
57 |
+
|
58 |
+
image_files = []
|
59 |
+
for root, dirs, files in os.walk(directory):
|
60 |
+
for file in files:
|
61 |
+
if os.path.splitext(file)[1].lower() in image_extensions:
|
62 |
+
image_files.append(os.path.join(root, file))
|
63 |
+
return image_files
|
64 |
+
|
65 |
+
def interact_with_agent(file_input, additional_notes):
|
66 |
+
shutil.rmtree("./figures")
|
67 |
+
os.makedirs("./figures")
|
68 |
+
|
69 |
+
data_file = pd.read_csv(file_input)
|
70 |
+
data_structure_notes = f"""- Description (output of .describe()):
|
71 |
+
{data_file.describe()}
|
72 |
+
- Columns with dtypes:
|
73 |
+
{data_file.dtypes}"""
|
74 |
+
|
75 |
+
prompt = base_prompt.format(structure_notes=data_structure_notes)
|
76 |
+
|
77 |
+
if additional_notes and len(additional_notes) > 0:
|
78 |
+
prompt += "\nAdditional notes on the data:\n" + additional_notes
|
79 |
+
|
80 |
+
messages = [gr.ChatMessage(role="user", content=prompt)]
|
81 |
+
yield messages + [
|
82 |
+
gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")
|
83 |
+
]
|
84 |
+
|
85 |
+
plot_image_paths = {}
|
86 |
+
for msg in stream_to_gradio(agent, prompt, data_file=data_file):
|
87 |
+
messages.append(msg)
|
88 |
+
for image_path in get_images_in_directory("./figures"):
|
89 |
+
if image_path not in plot_image_paths:
|
90 |
+
image_message = gr.ChatMessage(
|
91 |
+
role="assistant",
|
92 |
+
content=FileData(path=image_path, mime_type="image/png"),
|
93 |
+
)
|
94 |
+
plot_image_paths[image_path] = True
|
95 |
+
messages.append(image_message)
|
96 |
+
yield messages + [
|
97 |
+
gr.ChatMessage(role="assistant", content="⏳ _Still processing..._")
|
98 |
+
]
|
99 |
+
yield messages
|
100 |
+
|
101 |
+
|
102 |
+
with gr.Blocks(
|
103 |
+
theme=gr.themes.Soft(
|
104 |
+
primary_hue=gr.themes.colors.yellow,
|
105 |
+
secondary_hue=gr.themes.colors.blue,
|
106 |
+
)
|
107 |
+
) as demo:
|
108 |
+
gr.Markdown("""# Llama-3.1 Data analyst 📊🤔
|
109 |
+
|
110 |
+
Drop a `.csv` file below, add notes to describe this data if needed, and **Llama-3.1-70B will analyze the file content and draw figures for you!**""")
|
111 |
+
file_input = gr.File(label="Your file to analyze")
|
112 |
+
text_input = gr.Textbox(
|
113 |
+
label="Additional notes to support the analysis"
|
114 |
+
)
|
115 |
+
submit = gr.Button("Run analysis!", variant="primary")
|
116 |
+
chatbot = gr.Chatbot(
|
117 |
+
label="Data Analyst Agent",
|
118 |
+
type="messages",
|
119 |
+
avatar_images=(
|
120 |
+
None,
|
121 |
+
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
|
122 |
+
),
|
123 |
+
)
|
124 |
+
gr.Examples(
|
125 |
+
examples=[["./example/titanic.csv", example_notes]],
|
126 |
+
inputs=[file_input, text_input],
|
127 |
+
cache_examples=False
|
128 |
+
)
|
129 |
+
|
130 |
+
submit.click(interact_with_agent, [file_input, text_input], [chatbot])
|
131 |
+
|
132 |
+
if __name__ == "__main__":
|
133 |
+
demo.launch()
|