Dacho688 commited on
Commit
0f55eee
Β·
1 Parent(s): 7454a5c

git commit .

__pycache__/streaming.cpython-311.pyc ADDED
Binary file (4.04 kB). View file
 
__pycache__/test_streaming.cpython-311.pyc ADDED
Binary file (3.98 kB). View file
 
streaming.py CHANGED
@@ -1,6 +1,6 @@
1
  from transformers.agents.agent_types import AgentAudio, AgentImage, AgentText, AgentType
2
  from transformers.agents import ReactAgent
3
-
4
 
5
  def pull_message(step_log: dict):
6
  try:
@@ -29,7 +29,7 @@ def pull_message(step_log: dict):
29
  metadata={"title": "πŸ’₯ Error"},
30
  )
31
 
32
-
33
  def stream_to_gradio(agent: ReactAgent, task: str, **kwargs):
34
  """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
35
 
 
1
  from transformers.agents.agent_types import AgentAudio, AgentImage, AgentText, AgentType
2
  from transformers.agents import ReactAgent
3
+ import spaces
4
 
5
  def pull_message(step_log: dict):
6
  try:
 
29
  metadata={"title": "πŸ’₯ Error"},
30
  )
31
 
32
+ @spaces.GPU
33
  def stream_to_gradio(agent: ReactAgent, task: str, **kwargs):
34
  """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
35
 
test_app.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import gradio as gr
4
+ from transformers import ReactCodeAgent, HfEngine, Tool
5
+ import pandas as pd
6
+
7
+ from gradio import Chatbot
8
+ from test_streaming import stream_to_gradio
9
+ from huggingface_hub import login
10
+ from gradio.data_classes import FileData
11
+
12
+ login(os.getenv("HUGGINGFACEHUB_API_TOKEN"))
13
+
14
+ llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct")
15
+
16
+ agent = ReactCodeAgent(
17
+ tools=[],
18
+ llm_engine=llm_engine,
19
+ additional_authorized_imports=["numpy", "pandas", "matplotlib.pyplot", "seaborn", "scipy.stats"],
20
+ max_iterations=10,
21
+ )
22
+
23
+ base_prompt = """You are an expert data analyst.
24
+ According to the features you have and the data structure given below, determine which feature should be the target.
25
+ Then list 3 interesting questions that could be asked on this data, for instance about specific correlations with target variable.
26
+ Then answer these questions one by one, by finding the relevant numbers.
27
+ Meanwhile, plot some figures using matplotlib/seaborn and save them to the (already existing) folder './figures/': take care to clear each figure with plt.clf() before doing another plot.
28
+
29
+ In your final answer: summarize these correlations and trends
30
+ After each number derive real worlds insights, for instance: "Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter".
31
+ Your final answer should be a long string with at least 3 numbered and detailed parts.
32
+
33
+ Structure of the data:
34
+ {structure_notes}
35
+
36
+ The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
37
+ DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
38
+ """
39
+
40
+ example_notes="""This data is about the Titanic wreck in 1912.
41
+ The target figure is the survival of passengers, notes by 'Survived'
42
+ pclass: A proxy for socio-economic status (SES)
43
+ 1st = Upper
44
+ 2nd = Middle
45
+ 3rd = Lower
46
+ age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5
47
+ sibsp: The dataset defines family relations in this way...
48
+ Sibling = brother, sister, stepbrother, stepsister
49
+ Spouse = husband, wife (mistresses and fiancΓ©s were ignored)
50
+ parch: The dataset defines family relations in this way...
51
+ Parent = mother, father
52
+ Child = daughter, son, stepdaughter, stepson
53
+ Some children travelled only with a nanny, therefore parch=0 for them."""
54
+
55
+ def get_images_in_directory(directory):
56
+ image_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff'}
57
+
58
+ image_files = []
59
+ for root, dirs, files in os.walk(directory):
60
+ for file in files:
61
+ if os.path.splitext(file)[1].lower() in image_extensions:
62
+ image_files.append(os.path.join(root, file))
63
+ return image_files
64
+
65
+ def interact_with_agent(file_input, additional_notes):
66
+ shutil.rmtree("./figures")
67
+ os.makedirs("./figures")
68
+
69
+ data_file = pd.read_csv(file_input)
70
+ data_structure_notes = f"""- Description (output of .describe()):
71
+ {data_file.describe()}
72
+ - Columns with dtypes:
73
+ {data_file.dtypes}"""
74
+
75
+ prompt = base_prompt.format(structure_notes=data_structure_notes)
76
+
77
+ if additional_notes and len(additional_notes) > 0:
78
+ prompt += "\nAdditional notes on the data:\n" + additional_notes
79
+
80
+ messages = [gr.ChatMessage(role="user", content=prompt)]
81
+ yield messages + [
82
+ gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")
83
+ ]
84
+
85
+ plot_image_paths = {}
86
+ for msg in stream_to_gradio(agent, prompt, data_file=data_file):
87
+ messages.append(msg)
88
+ for image_path in get_images_in_directory("./figures"):
89
+ if image_path not in plot_image_paths:
90
+ image_message = gr.ChatMessage(
91
+ role="assistant",
92
+ content=FileData(path=image_path, mime_type="image/png"),
93
+ )
94
+ plot_image_paths[image_path] = True
95
+ messages.append(image_message)
96
+ yield messages + [
97
+ gr.ChatMessage(role="assistant", content="⏳ _Still processing..._")
98
+ ]
99
+ yield messages
100
+
101
+
102
+ with gr.Blocks(
103
+ theme=gr.themes.Soft(
104
+ primary_hue=gr.themes.colors.yellow,
105
+ secondary_hue=gr.themes.colors.blue,
106
+ )
107
+ ) as demo:
108
+ gr.Markdown("""# Llama-3.1 Data analyst πŸ“ŠπŸ€”
109
+
110
+ Drop a `.csv` file below, add notes to describe this data if needed, and **Llama-3.1-70B will analyze the file content and draw figures for you!**""")
111
+ file_input = gr.File(label="Your file to analyze")
112
+ text_input = gr.Textbox(
113
+ label="Additional notes to support the analysis"
114
+ )
115
+ submit = gr.Button("Run analysis!", variant="primary")
116
+ chatbot = gr.Chatbot(
117
+ label="Data Analyst Agent",
118
+ type="messages",
119
+ avatar_images=(
120
+ None,
121
+ "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
122
+ ),
123
+ )
124
+ gr.Examples(
125
+ examples=[["./example/titanic.csv", example_notes]],
126
+ inputs=[file_input, text_input],
127
+ cache_examples=False
128
+ )
129
+
130
+ submit.click(interact_with_agent, [file_input, text_input], [chatbot])
131
+
132
+ if __name__ == "__main__":
133
+ demo.launch()
test_streaming.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.agents.agent_types import AgentAudio, AgentImage, AgentText, AgentType
2
+ from transformers.agents import ReactAgent
3
+
4
+
5
+ def pull_message(step_log: dict):
6
+ try:
7
+ from gradio import ChatMessage
8
+ except ImportError:
9
+ raise ImportError("Gradio should be installed in order to launch a gradio demo.")
10
+
11
+ if step_log.get("rationale"):
12
+ yield ChatMessage(role="assistant", content=step_log["rationale"])
13
+ if step_log.get("tool_call"):
14
+ used_code = step_log["tool_call"]["tool_name"] == "code interpreter"
15
+ content = step_log["tool_call"]["tool_arguments"]
16
+ if used_code:
17
+ content = f"```py\n{content}\n```"
18
+ yield ChatMessage(
19
+ role="assistant",
20
+ metadata={"title": f"πŸ› οΈ Used tool {step_log['tool_call']['tool_name']}"},
21
+ content=content,
22
+ )
23
+ if step_log.get("observation"):
24
+ yield ChatMessage(role="assistant", content=f"```\n{step_log['observation']}\n```")
25
+ if step_log.get("error"):
26
+ yield ChatMessage(
27
+ role="assistant",
28
+ content=str(step_log["error"]),
29
+ metadata={"title": "πŸ’₯ Error"},
30
+ )
31
+
32
+
33
+ def stream_to_gradio(agent: ReactAgent, task: str, **kwargs):
34
+ """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
35
+
36
+ try:
37
+ from gradio import ChatMessage
38
+ except ImportError:
39
+ raise ImportError("Gradio should be installed in order to launch a gradio demo.")
40
+
41
+ class Output:
42
+ output: AgentType | str = None
43
+
44
+ for step_log in agent.run(task, stream=True, **kwargs):
45
+ if isinstance(step_log, dict):
46
+ for message in pull_message(step_log):
47
+ print("message", message)
48
+ yield message
49
+
50
+ Output.output = step_log
51
+ if isinstance(Output.output, AgentText):
52
+ yield ChatMessage(role="assistant", content=f"**Final answer:**\n```\n{Output.output.to_string()}\n```")
53
+ elif isinstance(Output.output, AgentImage):
54
+ yield ChatMessage(
55
+ role="assistant",
56
+ content={"path": Output.output.to_string(), "mime_type": "image/png"},
57
+ )
58
+ elif isinstance(Output.output, AgentAudio):
59
+ yield ChatMessage(
60
+ role="assistant",
61
+ content={"path": Output.output.to_string(), "mime_type": "audio/wav"},
62
+ )
63
+ else:
64
+ yield ChatMessage(role="assistant", content=Output.output)