Dacho688 commited on
Commit
7e4e094
·
1 Parent(s): 153efb4

Update readme

Browse files
Files changed (1) hide show
  1. README.md +57 -1
README.md CHANGED
@@ -7,5 +7,61 @@ sdk: docker
7
  app_port: 7860
8
  pinned: false
9
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
7
  app_port: 7860
8
  pinned: false
9
  ---
10
+ ## ML API
11
+ A FastAPI enpoint serving a fitted sklearn pipeline with an ordinal logistic regression model using the
12
+ <a href="https://pypi.org/project/mord/">Mord Python Package</a> to predict customer's "small quantity order importance ranking (1-10)."
13
+
14
+ #### Pipeline Steps
15
+ 1. Column Transformer<br>
16
+ a. Standard Scaling for numerical variables<br>
17
+ b. One-hot-encoding for categorical variables
18
+ 2. Feature Selection<br>
19
+ a. Lasso Regression
20
+ 3. Model <br>
21
+ a. Mord Ordinal Logistic Regression
22
+
23
+ The fitted pipeline is then serialized with joblib, served with Fast API (Uvicorn), containarized with Docker, and finally deployed to HuggingFace Spaces.
24
+
25
+ Prediction requests can be sent to https://dkondic-ml-api.hf.space/predict as a list of dictionaries where each dictionary is an instance to predict. Thus, prediction is possible for single instance or batch of instances. Please see <a href="https://dkondic-ml-api.hf.space/">ML API Docs</a> for more indormation.<br>
26
+
27
+ #### Request Body
28
+ ```
29
+ [
30
+ {
31
+ "CUST_NBR": "string",
32
+ "MENU_TYP_DESC": "string",
33
+ "PYR_SEG_CD": "string",
34
+ "DIV_NBR": "string",
35
+ "WKLY_ORDERS": 0,
36
+ "PERC_EB": 0,
37
+ "AVG_WKLY_SALES": 0,
38
+ "AVG_WKLY_CASES": 0
39
+ }
40
+ ]
41
+ ```
42
+ #### Resonse Body
43
+ ```
44
+ {
45
+ "prediction": [
46
+ 0
47
+ ]
48
+ }
49
+ ```
50
+ #### Prediction xample using Python requests
51
+ ```py
52
+ import requests
53
+
54
+ data = [
55
+ {"CUST_NBR":"1111",
56
+ "MENU_TYP_DESC":"MEXICAN",
57
+ "PYR_SEG_CD":"Education",
58
+ "DIV_NBR":"20",
59
+ "WKLY_ORDERS": 15,
60
+ "PERC_EB":0.80,
61
+ "AVG_WKLY_SALES":2656.04,
62
+ "AVG_WKLY_CASES":67.00}]
63
+
64
+ response = requests.post("https://dkondic-ml-api.hf.space/predict", json=data)
65
+ print(response.json())
66
+ ```
67