Spaces:
Paused
Paused
from fastapi import FastAPI, HTTPException | |
from fastapi.staticfiles import StaticFiles | |
from pydantic import BaseModel | |
import pickle | |
import uvicorn | |
import logging | |
import os | |
import shutil | |
import subprocess | |
import torch | |
from langchain.chains import RetrievalQA | |
from langchain.embeddings import HuggingFaceInstructEmbeddings | |
# from langchain.embeddings import HuggingFaceEmbeddings | |
from run_localGPT import load_model | |
from prompt_template_utils import get_prompt_template | |
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
from langchain.vectorstores import Chroma | |
from werkzeug.utils import secure_filename | |
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME | |
if torch.backends.mps.is_available(): | |
DEVICE_TYPE = "mps" | |
elif torch.cuda.is_available(): | |
DEVICE_TYPE = "cuda" | |
else: | |
DEVICE_TYPE = "cpu" | |
SHOW_SOURCES = True | |
logging.info(f"Running on: {DEVICE_TYPE}") | |
logging.info(f"Display Source Documents set to: {SHOW_SOURCES}") | |
EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE}) | |
# load the vectorstore | |
DB = Chroma( | |
persist_directory=PERSIST_DIRECTORY, | |
embedding_function=EMBEDDINGS, | |
client_settings=CHROMA_SETTINGS, | |
) | |
RETRIEVER = DB.as_retriever() | |
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME) | |
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False) | |
QA = RetrievalQA.from_chain_type( | |
llm=LLM, | |
chain_type="stuff", | |
retriever=RETRIEVER, | |
return_source_documents=SHOW_SOURCES, | |
chain_type_kwargs={ | |
"prompt": prompt, | |
}, | |
) | |
system_message = """ | |
you are a helpful, respectful and honest assistant. you should only respond to the following topics: water, climate, global warming, NASA data and geography. Always answer in the most helpful and safe way possible. Your answers should not include harmful, unethical, racist, sexist, toxic, dangerous or illegal content. Make sure that your answers are socially unbiased and positive in nature, as well as sticking to the topics of water, climate, global warming, NASA data and geography. | |
If a question doesn't make sense or isn't factually coherent, explain that only questions on the topics of water, climate, global warming, NASA data and geography are accepted. If you don't know the answer to a question, don't share false information. | |
""" | |
class Predict(BaseModel): | |
prompt: str | |
app = FastAPI() | |
app.mount("/", StaticFiles(directory="static",html = True), name="static") | |
# @app.get("/") | |
# def read_root(): | |
# return {"Hello": "World"} | |
app.mount("/static", StaticFiles(directory="static"), name="static") | |
async def predict(data: Predict): | |
input_prompt = data.prompt | |
user_prompt = system_message + " " + input_prompt | |
if user_prompt: | |
# print(f'User Prompt: {user_prompt}') | |
# Get the answer from the chain | |
res = QA(user_prompt) | |
answer, docs = res["result"], res["source_documents"] | |
prompt_response_dict = { | |
"Prompt": user_prompt, | |
"Answer": answer, | |
} | |
prompt_response_dict["Sources"] = [] | |
for document in docs: | |
prompt_response_dict["Sources"].append( | |
(os.path.basename(str(document.metadata["source"])), str(document.page_content)) | |
) | |
return {"response": prompt_response_dict} | |
else: | |
raise HTTPException(status_code=400, detail="Prompt Incorrect") | |
def run_ingest_route(): | |
try: | |
if os.path.exists(PERSIST_DIRECTORY): | |
try: | |
shutil.rmtree(PERSIST_DIRECTORY) | |
except OSError as e: | |
raise HTTPException(status_code=500, detail=f"Error: {e.filename} - {e.strerror}.") | |
else: | |
raise HTTPException(status_code=500, detail="The directory does not exist") | |
run_langest_commands = ["python", "ingest.py"] | |
if DEVICE_TYPE == "cpu": | |
run_langest_commands.append("--device_type") | |
run_langest_commands.append(DEVICE_TYPE) | |
result = subprocess.run(run_langest_commands, capture_output=True) | |
if result.returncode != 0: | |
raise HTTPException(status_code=400, detail="Script execution failed: {}") | |
# load the vectorstore | |
DB = Chroma( | |
persist_directory=PERSIST_DIRECTORY, | |
embedding_function=EMBEDDINGS, | |
client_settings=CHROMA_SETTINGS, | |
) | |
RETRIEVER = DB.as_retriever() | |
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False) | |
QA = RetrievalQA.from_chain_type( | |
llm=LLM, | |
chain_type="stuff", | |
retriever=RETRIEVER, | |
return_source_documents=SHOW_SOURCES, | |
chain_type_kwargs={ | |
"prompt": prompt, | |
}, | |
) | |
response = "Script executed successfully: {}".format(result.stdout.decode("utf-8")) | |
return {"response": response} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}") | |