Spaces:
Running
on
Zero
Running
on
Zero
# trellis_fastAPI_integration.py | |
# Version: 1.0.0 | |
# a.1 Imports and Initial Setup | |
import os | |
import shutil | |
import threading | |
import uvicorn | |
import logging | |
import numpy as np | |
import torch | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from easydict import EasyDict as edict # Assuming EasyDict might be needed if state used | |
# Assuming these are available or installed correctly in the environment | |
from trellis.utils import postprocessing_utils | |
# We get the pipeline object passed in, so no direct import needed here | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# FastAPI app | |
api_app = FastAPI() | |
# --- Temporary Directory --- (Consistent with appTrellis.py) | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
# b.1 Request/Response Models | |
class GenerateRequest(BaseModel): | |
prompt: str | |
seed: int = 0 # Default seed | |
mesh_simplify: float = 0.95 # Default simplify factor | |
texture_size: int = 1024 # Default texture size | |
# Add other generation parameters if needed (e.g., guidance, steps) | |
# c.1 API Endpoint for Synchronous Generation | |
async def generate_sync_api(request_data: GenerateRequest): | |
"""API endpoint to synchronously generate a model and return the GLB path.""" | |
logger.info("API /generate-sync endpoint hit.") # Log when endpoint is called | |
# Access the pipeline object stored in app state | |
pipeline = api_app.state.pipeline | |
if pipeline is None: | |
logger.error("API Error: Pipeline not initialized or passed correctly") | |
raise HTTPException(status_code=503, detail="Pipeline not ready") | |
prompt = request_data.prompt | |
seed = request_data.seed | |
mesh_simplify = request_data.mesh_simplify | |
texture_size = request_data.texture_size | |
# Extract other params if added to GenerateRequest | |
ss_sampling_steps = 25 # Example default | |
ss_guidance_strength = 7.5 # Example default | |
slat_sampling_steps = 25 # Example default | |
slat_guidance_strength = 7.5 # Example default | |
logger.info(f"API /generate-sync received prompt: {prompt}") | |
user_dir = None # Define user_dir outside try for cleanup | |
try: | |
# --- Determine a unique temporary directory for this API call --- | |
# Using a simpler random hash name for the API call directory | |
api_call_hash = f"api_sync_{np.random.randint(100000)}" | |
user_dir = os.path.join(TMP_DIR, api_call_hash) | |
os.makedirs(user_dir, exist_ok=True) | |
logger.info(f"API using temp dir: {user_dir}") | |
# --- Stage 1: Run the text-to-3D pipeline --- | |
logger.info("API running pipeline...") | |
# Ensure pipeline is run with appropriate parameters | |
outputs = pipeline.run( | |
prompt, | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
gs = outputs['gaussian'][0] # Get the Gaussian representation | |
mesh = outputs['mesh'][0] # Get the Mesh representation | |
logger.info("API pipeline finished.") | |
torch.cuda.empty_cache() | |
# --- Stage 2: Extract GLB --- | |
logger.info("API extracting GLB...") | |
# Use the postprocessing utility | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = os.path.join(user_dir, 'generated_sync.glb') | |
glb.export(glb_path) | |
logger.info(f"API GLB exported to: {glb_path}") | |
torch.cuda.empty_cache() | |
# Return the absolute path within the container | |
# This path needs to be accessible via the /file= route from outside | |
absolute_glb_path = os.path.abspath(glb_path) | |
logger.info(f"API returning absolute path: {absolute_glb_path}") | |
return {"status": "success", "glb_path": absolute_glb_path} | |
except Exception as e: | |
logger.error(f"API /generate-sync error: {str(e)}", exc_info=True) | |
# Clean up temp dir on error if it exists and was created | |
if user_dir and os.path.exists(user_dir): | |
try: | |
shutil.rmtree(user_dir) | |
logger.info(f"API cleaned up failed directory: {user_dir}") | |
except Exception as cleanup_e: | |
logger.error(f"API Error cleaning up dir {user_dir}: {cleanup_e}") | |
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}") | |
# Note: We don't automatically clean up the user_dir on success, | |
# as the file needs to be accessible for download by the calling server. | |
# A separate cleanup mechanism might be needed eventually. | |
# d.1 API Server Setup Functions | |
def run_api(): | |
"""Run the FastAPI server.""" | |
logger.info("FastAPI Integration: run_api function called.") | |
# Ensure pipeline is available in app state before starting | |
if not hasattr(api_app.state, 'pipeline') or api_app.state.pipeline is None: | |
logger.error("FastAPI Integration: Cannot start API server - Pipeline object not found in app state.") | |
return | |
logger.info("FastAPI Integration: Pipeline object found in state. Attempting to start Uvicorn...") | |
# Run on port 8000 - ensure this doesn't conflict if Gradio also tries this port | |
try: | |
uvicorn.run(api_app, host="0.0.0.0", port=8000) | |
logger.info("FastAPI Integration: Uvicorn server stopped.") # Logged when server exits cleanly | |
except Exception as e: | |
logger.error(f"FastAPI Integration: Uvicorn server failed to run or crashed: {e}", exc_info=True) | |
def start_api_thread(pipeline_object): | |
"""Start the API server in a background thread | |
Args: | |
pipeline_object: The initialized TrellisTextTo3DPipeline object | |
""" | |
logger.info("FastAPI Integration: start_api_thread called.") | |
# Store the passed pipeline object in the app's state | |
if pipeline_object is None: | |
logger.error("FastAPI Integration: start_api_thread received a None pipeline_object. Aborting thread start.") | |
return None | |
try: | |
api_app.state.pipeline = pipeline_object | |
logger.info("FastAPI Integration: Pipeline object successfully stored in app state.") | |
except Exception as e: | |
logger.error(f"FastAPI Integration: Failed to store pipeline object in app state: {e}", exc_info=True) | |
return None | |
logger.info("FastAPI Integration: Creating API thread...") | |
api_thread = threading.Thread(target=run_api, daemon=True) | |
logger.info("FastAPI Integration: Attempting to start API thread...") | |
try: | |
api_thread.start() | |
logger.info("FastAPI Integration: API thread started (start() method called).") | |
except Exception as e: | |
logger.error(f"FastAPI Integration: Failed to start API thread: {e}", exc_info=True) | |
return None # Indicate thread failed to start | |
logger.info("Started Trellis FastAPI integration server thread function finished.") # Confirms this function completed | |
return api_thread | |