UFO / app.py
djl234's picture
Update app.py
68ad3c1
import tqdm
#import fastCNN
import numpy as np
import gradio as gr
import os
#os.system("sudo apt-get install nvIDia-cuda-toolkit")
os.system("pip3 install torch")
#os.system("/usr/local/bin/python -m pip install --upgrade pip")
os.system("pip3 install collections")
os.system("pip3 install torchvision")
os.system("pip3 install einops")
aaaa=0
os.system("pip3 install pydensecrf")
#os.system("pip install argparse")
import pydensecrf.densecrf as dcrf
from PIL import Image
import torch
import torch.nn.functional as F
from torchvision import transforms
from model_video import build_model
import numpy as np
import collections
def crf_refine(img, annos):
print(img.shape,annos.shape)
def _sigmoid(x):
return 1 / (1 + np.exp(-x))
assert img.dtype == np.uint8
assert annos.dtype == np.uint8
assert img.shape[:2] == annos.shape
# img and annos should be np array with data type uint8
EPSILON = 1e-8
M = 2 # salient or not
tau = 1.05
# Setup the CRF model
d = dcrf.DenseCRF2D(img.shape[1], img.shape[0], M)
anno_norm = annos / 255.
n_energy = -np.log((1.0 - anno_norm + EPSILON)) / (tau * _sigmoid(1 - anno_norm))
p_energy = -np.log(anno_norm + EPSILON) / (tau * _sigmoid(anno_norm))
U = np.zeros((M, img.shape[0] * img.shape[1]), dtype='float32')
U[0, :] = n_energy.flatten()
U[1, :] = p_energy.flatten()
d.setUnaryEnergy(U)
d.addPairwiseGaussian(sxy=3, compat=3)
d.addPairwiseBilateral(sxy=60, srgb=5, rgbim=img, compat=5)
# Do the inference
infer = np.array(d.inference(1)).astype('float32')
res = infer[1, :]
res = res * 255
res = res.reshape(img.shape[:2])
return res.astype('uint8')
#import argparse
device='cpu'
net = build_model(device).to(device)
#net=torch.nn.DataParallel(net)
model_path = 'image_best.pth'
print(model_path)
weight=torch.load(model_path,map_location=torch.device(device))
#print(type(weight))
new_dict=collections.OrderedDict()
for k in weight.keys():
new_dict[k[len('module.'):]]=weight[k]
net.load_state_dict(new_dict)
net.eval()
net = net.to(device)
def test(gpu_id, net, img_list, group_size, img_size):
print('test')
#device=device
hl,wl=[_.shape[0] for _ in img_list],[_.shape[1] for _ in img_list]
img_transform = transforms.Compose([transforms.Resize((img_size, img_size)), transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
img_transform_gray = transforms.Compose([transforms.Resize((img_size, img_size)), transforms.ToTensor(),
transforms.Normalize(mean=[0.449], std=[0.226])])
with torch.no_grad():
group_img=torch.rand(5,3,224,224)
for i in range(5):
group_img[i]=img_transform(Image.fromarray(img_list[i]))
_,pred_mask=net(group_img*1)
pred_mask=(pred_mask.detach().squeeze()*255)#.numpy().astype(np.uint8)
#pred_mask=[F.interpolate(pred_mask[i].reshape(1,1,pred_mask[i].shape[-2],pred_mask[i].shape[-1]),size=(size,size),mode='bilinear').squeeze().numpy().astype(np.uint8) for i in range(5)]
img_resize=[((group_img[i]-group_img[i].min())/(group_img[i].max()-group_img[i].min())*255).permute(1,2,0).contiguous().numpy().astype(np.uint8)
for i in range(5)]
pred_mask=[crf_refine(img_resize[i],pred_mask[i].numpy().astype(np.uint8)) for i in range(5)]
#for i in range(5):
# print(img_list[i].shape,pred_mask[i].shape)
#pred_mask=[crf_refine(img_list[i],pred_mask[i]) for i in range(5)]
print(pred_mask[0].shape)
white=(torch.ones(2,pred_mask[0].shape[1],3)*255).long()
result = [torch.cat([torch.from_numpy(img_resize[i]),white,torch.from_numpy(pred_mask[i]).unsqueeze(2).repeat(1,1,3)],dim=0).numpy() for i in range(5)]
#w, h = 224,224#Image.open(image_list[i][j]).size
#result = result.resize((w, h), Image.BILINEAR)
#result.convert('L').save('0.png')
print('done')
return result
img_lst=[(torch.rand(352,352,3)*255).numpy().astype(np.uint8) for i in range(5)]
#simly test
res=test('cpu',net,img_lst,5,224)
'''for i in range(5):
assert res[i].shape[0]==352 and res[i].shape[1]==352 and res[i].shape[2]==3'''
def sepia(img1,img2,img3,img4,img5):
print('sepia')
'''ans=[]
print(len(input_imgs))
for input_img in input_imgs:
sepia_filter = np.array(
[[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]]
)
sepia_img = input_img.dot(sepia_filter.T)
sepia_img /= sepia_img.max()
ans.append(input_img)'''
img_list=[img1,img2,img3,img4,img5]
h_list,w_list=[_.shape[0] for _ in img_list],[_.shape[1] for _ in img_list]
#print(type(img1))
#print(img1.shape)
result_list=test(device,net,img_list,5,224)
#result_list=[result_list[i].resize((w_list[i], h_list[i]), Image.BILINEAR) for i in range(5)]
img1,img2,img3,img4,img5=result_list#test('cpu',net,img_list,5,224)
white=(torch.ones(img1.shape[0],2,3)*255).numpy().astype(np.uint8)
return np.concatenate([img1,white,img2,white,img3,white,img4,white,img5],axis=1)
#gr.Image(shape=(224, 2))
#demo = gr.Interface(sepia, inputs=["image","image","image","image","image"], outputs=["image","image","image","image","image"])#gr.Interface(sepia, gr.Image(shape=(200, 200)), "image")
demo = gr.Interface(sepia, inputs=["image","image","image","image","image"], outputs=["image"])
demo.launch(debug=True)