UFO / Intra_MLP.py
djl234's picture
Create new file
df4f158
raw
history blame
3.37 kB
import torch
import numpy
#from transformer import Local_Attention,Transformer_1
# codes of this function are borrowed from https://github.com/yanx27/Pointnet_Pointnet2_pytorch/blob/master/models/pointnet2_utils.py
def index_points(device, points, idx):
"""
Input:
points: input points data, [B, N, C]
idx: sample index data, [B, S]
Return:
new_points:, indexed points data, [B, S, C]
"""
B = points.shape[0]
view_shape = list(idx.shape)
view_shape[1:] = [1] * (len(view_shape) - 1)
repeat_shape = list(idx.shape)
repeat_shape[0] = 1
# batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
new_points = points[batch_indices, idx, :]
return new_points
def knn_l2(device, net, k, u):
'''
Input:
k: int32, number of k in k-nn search
net: (batch_size, npoint, c) float32 array, points
u: int32, block size
Output:
idx: (batch_size, npoint, k) int32 array, indices to input points
'''
INF = 1e8
batch_size = net.size(0)
npoint = net.size(1)
n_channel = net.size(2)
square = torch.pow(torch.norm(net, dim=2,keepdim=True),2)
def u_block(batch_size, npoint, u):
block = numpy.zeros([batch_size, npoint, npoint])
n = npoint // u
for i in range(n):
block[:, (i*u):(i*u+u), (i*u):(i*u+u)] = numpy.ones([batch_size, u, u]) * (-INF)
return block
# minus_distance = 2 * torch.matmul(net, net.transpose(2,1)) - square - square.transpose(2,1) + torch.Tensor(u_block(batch_size, npoint, u)).to(device)
minus_distance = 2 * torch.matmul(net, net.transpose(2,1)) - square - square.transpose(2,1) + torch.Tensor(u_block(batch_size, npoint, u)).to(device)
_, indices = torch.topk(minus_distance, k, largest=True, sorted=False)
return indices
if __name__ == '__main__':
bs,gs,k=5,5,4
A=torch.rand(bs*gs,512,14,14).cuda()
net=Transformer_1(512,4,4,782).cuda()
Y=net(A)
print(Y.shape)
exit(0)
feature_map_size=A.shape[-1]
point = A.permute(0,2,1,3,4).reshape(A.size(0), A.size(1)*A.shape[-1]*A.shape[-2], -1)
point = point.permute(0,2,1)
X=point
print(point.shape)
idx = knn_l2(0, point, 4, 1)
#print(idx)
feat=idx
new_point = index_points(0, point,idx)
group_point = new_point.permute(0, 3, 2, 1)
print(group_point.shape)
_1,_2,_3,_4=group_point.shape
X=X.permute(0,2,1)
print(X.shape)
#torch.cat([group_point.reshape(_1*_2,k,_4),X.reshape(_1*_2,1,_4)],dim=1).permute(0,2,1)
attn_map=X.reshape(_1*_2,1,_4)@torch.cat([group_point.reshape(_1*_2,k,_4),X.reshape(_1*_2,1,_4)],dim=1).permute(0,2,1)
V=torch.cat([group_point.reshape(_1*_2,k,_4),X.reshape(_1*_2,1,_4)],dim=1)
print(attn_map.shape)
Y=attn_map@V
Y=Y.reshape(_1,_2,_4)
#group_point = torch.max(group_point, 2)[0] # [B, D', S]
group_point=Y
print(group_point.shape)
intra_mask = group_point.view(bs,gs, group_point.size(2), feature_map_size, feature_map_size)
print(intra_mask.shape)