Spaces:
Sleeping
Sleeping
import math | |
import random | |
from abc import abstractmethod | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch import autocast | |
from tortoise.models.arch_util import AttentionBlock, normalization | |
def is_latent(t): | |
return t.dtype == torch.float | |
def is_sequence(t): | |
return t.dtype == torch.long | |
def timestep_embedding(timesteps, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) | |
* torch.arange(start=0, end=half, dtype=torch.float32) | |
/ half | |
).to(device=timesteps.device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
class TimestepBlock(nn.Module): | |
def forward(self, x, emb): | |
""" | |
Apply the module to `x` given `emb` timestep embeddings. | |
""" | |
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
def forward(self, x, emb): | |
for layer in self: | |
if isinstance(layer, TimestepBlock): | |
x = layer(x, emb) | |
else: | |
x = layer(x) | |
return x | |
class ResBlock(TimestepBlock): | |
def __init__( | |
self, | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=None, | |
dims=2, | |
kernel_size=3, | |
efficient_config=True, | |
use_scale_shift_norm=False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_scale_shift_norm = use_scale_shift_norm | |
padding = {1: 0, 3: 1, 5: 2}[kernel_size] | |
eff_kernel = 1 if efficient_config else 3 | |
eff_padding = 0 if efficient_config else 1 | |
self.in_layers = nn.Sequential( | |
normalization(channels), | |
nn.SiLU(), | |
nn.Conv1d(channels, self.out_channels, eff_kernel, padding=eff_padding), | |
) | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear( | |
emb_channels, | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
normalization(self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
nn.Conv1d( | |
self.out_channels, self.out_channels, kernel_size, padding=padding | |
), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
else: | |
self.skip_connection = nn.Conv1d( | |
channels, self.out_channels, eff_kernel, padding=eff_padding | |
) | |
def forward(self, x, emb): | |
h = self.in_layers(x) | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = torch.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
h = h + emb_out | |
h = self.out_layers(h) | |
return self.skip_connection(x) + h | |
class DiffusionLayer(TimestepBlock): | |
def __init__(self, model_channels, dropout, num_heads): | |
super().__init__() | |
self.resblk = ResBlock( | |
model_channels, | |
model_channels, | |
dropout, | |
model_channels, | |
dims=1, | |
use_scale_shift_norm=True, | |
) | |
self.attn = AttentionBlock( | |
model_channels, num_heads, relative_pos_embeddings=True | |
) | |
def forward(self, x, time_emb): | |
y = self.resblk(x, time_emb) | |
return self.attn(y) | |
class DiffusionTts(nn.Module): | |
def __init__( | |
self, | |
model_channels=512, | |
num_layers=8, | |
in_channels=100, | |
in_latent_channels=512, | |
in_tokens=8193, | |
out_channels=200, # mean and variance | |
dropout=0, | |
use_fp16=False, | |
num_heads=16, | |
# Parameters for regularization. | |
layer_drop=0.1, | |
unconditioned_percentage=0.1, # This implements a mechanism similar to what is used in classifier-free training. | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
self.dropout = dropout | |
self.num_heads = num_heads | |
self.unconditioned_percentage = unconditioned_percentage | |
self.enable_fp16 = use_fp16 | |
self.layer_drop = layer_drop | |
self.inp_block = nn.Conv1d(in_channels, model_channels, 3, 1, 1) | |
self.time_embed = nn.Sequential( | |
nn.Linear(model_channels, model_channels), | |
nn.SiLU(), | |
nn.Linear(model_channels, model_channels), | |
) | |
# Either code_converter or latent_converter is used, depending on what type of conditioning data is fed. | |
# This model is meant to be able to be trained on both for efficiency purposes - it is far less computationally | |
# complex to generate tokens, while generating latents will normally mean propagating through a deep autoregressive | |
# transformer network. | |
self.code_embedding = nn.Embedding(in_tokens, model_channels) | |
self.code_converter = nn.Sequential( | |
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), | |
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), | |
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), | |
) | |
self.code_norm = normalization(model_channels) | |
self.latent_conditioner = nn.Sequential( | |
nn.Conv1d(in_latent_channels, model_channels, 3, padding=1), | |
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), | |
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), | |
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), | |
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True), | |
) | |
self.contextual_embedder = nn.Sequential( | |
nn.Conv1d(in_channels, model_channels, 3, padding=1, stride=2), | |
nn.Conv1d(model_channels, model_channels * 2, 3, padding=1, stride=2), | |
AttentionBlock( | |
model_channels * 2, | |
num_heads, | |
relative_pos_embeddings=True, | |
do_checkpoint=False, | |
), | |
AttentionBlock( | |
model_channels * 2, | |
num_heads, | |
relative_pos_embeddings=True, | |
do_checkpoint=False, | |
), | |
AttentionBlock( | |
model_channels * 2, | |
num_heads, | |
relative_pos_embeddings=True, | |
do_checkpoint=False, | |
), | |
AttentionBlock( | |
model_channels * 2, | |
num_heads, | |
relative_pos_embeddings=True, | |
do_checkpoint=False, | |
), | |
AttentionBlock( | |
model_channels * 2, | |
num_heads, | |
relative_pos_embeddings=True, | |
do_checkpoint=False, | |
), | |
) | |
self.unconditioned_embedding = nn.Parameter(torch.randn(1, model_channels, 1)) | |
self.conditioning_timestep_integrator = TimestepEmbedSequential( | |
DiffusionLayer(model_channels, dropout, num_heads), | |
DiffusionLayer(model_channels, dropout, num_heads), | |
DiffusionLayer(model_channels, dropout, num_heads), | |
) | |
self.integrating_conv = nn.Conv1d( | |
model_channels * 2, model_channels, kernel_size=1 | |
) | |
self.mel_head = nn.Conv1d(model_channels, in_channels, kernel_size=3, padding=1) | |
self.layers = nn.ModuleList( | |
[ | |
DiffusionLayer(model_channels, dropout, num_heads) | |
for _ in range(num_layers) | |
] | |
+ [ | |
ResBlock( | |
model_channels, | |
model_channels, | |
dropout, | |
dims=1, | |
use_scale_shift_norm=True, | |
) | |
for _ in range(3) | |
] | |
) | |
self.out = nn.Sequential( | |
normalization(model_channels), | |
nn.SiLU(), | |
nn.Conv1d(model_channels, out_channels, 3, padding=1), | |
) | |
def get_grad_norm_parameter_groups(self): | |
groups = { | |
"minicoder": list(self.contextual_embedder.parameters()), | |
"layers": list(self.layers.parameters()), | |
"code_converters": list(self.code_embedding.parameters()) | |
+ list(self.code_converter.parameters()) | |
+ list(self.latent_conditioner.parameters()) | |
+ list(self.latent_conditioner.parameters()), | |
"timestep_integrator": list( | |
self.conditioning_timestep_integrator.parameters() | |
) | |
+ list(self.integrating_conv.parameters()), | |
"time_embed": list(self.time_embed.parameters()), | |
} | |
return groups | |
def get_conditioning(self, conditioning_input): | |
speech_conditioning_input = ( | |
conditioning_input.unsqueeze(1) | |
if len(conditioning_input.shape) == 3 | |
else conditioning_input | |
) | |
conds = [] | |
for j in range(speech_conditioning_input.shape[1]): | |
conds.append(self.contextual_embedder(speech_conditioning_input[:, j])) | |
conds = torch.cat(conds, dim=-1) | |
conds = conds.mean(dim=-1) | |
return conds | |
def timestep_independent( | |
self, | |
aligned_conditioning, | |
conditioning_latent, | |
expected_seq_len, | |
return_code_pred, | |
): | |
# Shuffle aligned_latent to BxCxS format | |
if is_latent(aligned_conditioning): | |
aligned_conditioning = aligned_conditioning.permute(0, 2, 1) | |
cond_scale, cond_shift = torch.chunk(conditioning_latent, 2, dim=1) | |
if is_latent(aligned_conditioning): | |
code_emb = self.latent_conditioner(aligned_conditioning) | |
else: | |
code_emb = self.code_embedding(aligned_conditioning).permute(0, 2, 1) | |
code_emb = self.code_converter(code_emb) | |
code_emb = self.code_norm(code_emb) * ( | |
1 + cond_scale.unsqueeze(-1) | |
) + cond_shift.unsqueeze(-1) | |
unconditioned_batches = torch.zeros( | |
(code_emb.shape[0], 1, 1), device=code_emb.device | |
) | |
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance. | |
if self.training and self.unconditioned_percentage > 0: | |
unconditioned_batches = ( | |
torch.rand((code_emb.shape[0], 1, 1), device=code_emb.device) | |
< self.unconditioned_percentage | |
) | |
code_emb = torch.where( | |
unconditioned_batches, | |
self.unconditioned_embedding.repeat( | |
aligned_conditioning.shape[0], 1, 1 | |
), | |
code_emb, | |
) | |
expanded_code_emb = F.interpolate( | |
code_emb, size=expected_seq_len, mode="nearest" | |
) | |
if not return_code_pred: | |
return expanded_code_emb | |
else: | |
mel_pred = self.mel_head(expanded_code_emb) | |
# Multiply mel_pred by !unconditioned_branches, which drops the gradient on unconditioned branches. This is because we don't want that gradient being used to train parameters through the codes_embedder as it unbalances contributions to that network from the MSE loss. | |
mel_pred = mel_pred * unconditioned_batches.logical_not() | |
return expanded_code_emb, mel_pred | |
def forward( | |
self, | |
x, | |
timesteps, | |
aligned_conditioning=None, | |
conditioning_latent=None, | |
precomputed_aligned_embeddings=None, | |
conditioning_free=False, | |
return_code_pred=False, | |
): | |
""" | |
Apply the model to an input batch. | |
:param x: an [N x C x ...] Tensor of inputs. | |
:param timesteps: a 1-D batch of timesteps. | |
:param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced. | |
:param conditioning_latent: a pre-computed conditioning latent; see get_conditioning(). | |
:param precomputed_aligned_embeddings: Embeddings returned from self.timestep_independent() | |
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
assert precomputed_aligned_embeddings is not None or ( | |
aligned_conditioning is not None and conditioning_latent is not None | |
) | |
assert not ( | |
return_code_pred and precomputed_aligned_embeddings is not None | |
) # These two are mutually exclusive. | |
unused_params = [] | |
if conditioning_free: | |
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1]) | |
unused_params.extend( | |
list(self.code_converter.parameters()) | |
+ list(self.code_embedding.parameters()) | |
) | |
unused_params.extend(list(self.latent_conditioner.parameters())) | |
else: | |
if precomputed_aligned_embeddings is not None: | |
code_emb = precomputed_aligned_embeddings | |
else: | |
code_emb, mel_pred = self.timestep_independent( | |
aligned_conditioning, conditioning_latent, x.shape[-1], True | |
) | |
if is_latent(aligned_conditioning): | |
unused_params.extend( | |
list(self.code_converter.parameters()) | |
+ list(self.code_embedding.parameters()) | |
) | |
else: | |
unused_params.extend(list(self.latent_conditioner.parameters())) | |
unused_params.append(self.unconditioned_embedding) | |
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) | |
code_emb = self.conditioning_timestep_integrator(code_emb, time_emb) | |
x = self.inp_block(x) | |
x = torch.cat([x, code_emb], dim=1) | |
x = self.integrating_conv(x) | |
for i, lyr in enumerate(self.layers): | |
# Do layer drop where applicable. Do not drop first and last layers. | |
if ( | |
self.training | |
and self.layer_drop > 0 | |
and i != 0 | |
and i != (len(self.layers) - 1) | |
and random.random() < self.layer_drop | |
): | |
unused_params.extend(list(lyr.parameters())) | |
else: | |
# First and last blocks will have autocast disabled for improved precision. | |
with autocast(x.device.type, enabled=self.enable_fp16 and i != 0): | |
x = lyr(x, time_emb) | |
x = x.float() | |
out = self.out(x) | |
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors. | |
extraneous_addition = 0 | |
for p in unused_params: | |
extraneous_addition = extraneous_addition + p.mean() | |
out = out + extraneous_addition * 0 | |
if return_code_pred: | |
return out, mel_pred | |
return out | |
if __name__ == "__main__": | |
clip = torch.randn(2, 100, 400) | |
aligned_latent = torch.randn(2, 388, 512) | |
aligned_sequence = torch.randint(0, 8192, (2, 100)) | |
cond = torch.randn(2, 100, 400) | |
ts = torch.LongTensor([600, 600]) | |
model = DiffusionTts(512, layer_drop=0.3, unconditioned_percentage=0.5) | |
# Test with latent aligned conditioning | |
# o = model(clip, ts, aligned_latent, cond) | |
# Test with sequence aligned conditioning | |
o = model(clip, ts, aligned_sequence, cond) | |