Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch import einsum | |
from tortoise.models.arch_util import CheckpointedXTransformerEncoder | |
from tortoise.models.transformer import Transformer | |
from tortoise.models.xtransformers import Encoder | |
def exists(val): | |
return val is not None | |
def masked_mean(t, mask, dim=1): | |
t = t.masked_fill(~mask[:, :, None], 0.0) | |
return t.sum(dim=1) / mask.sum(dim=1)[..., None] | |
class CLVP(nn.Module): | |
""" | |
CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding | |
transcribed text. | |
Originally from https://github.com/lucidrains/DALLE-pytorch/blob/main/dalle_pytorch/dalle_pytorch.py | |
""" | |
def __init__( | |
self, | |
*, | |
dim_text=512, | |
dim_speech=512, | |
dim_latent=512, | |
num_text_tokens=256, | |
text_enc_depth=6, | |
text_seq_len=120, | |
text_heads=8, | |
num_speech_tokens=8192, | |
speech_enc_depth=6, | |
speech_heads=8, | |
speech_seq_len=250, | |
text_mask_percentage=0, | |
voice_mask_percentage=0, | |
wav_token_compression=1024, | |
use_xformers=False, | |
): | |
super().__init__() | |
self.text_emb = nn.Embedding(num_text_tokens, dim_text) | |
self.to_text_latent = nn.Linear(dim_text, dim_latent, bias=False) | |
self.speech_emb = nn.Embedding(num_speech_tokens, dim_speech) | |
self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False) | |
if use_xformers: | |
self.text_transformer = CheckpointedXTransformerEncoder( | |
needs_permute=False, | |
exit_permute=False, | |
max_seq_len=-1, | |
attn_layers=Encoder( | |
dim=dim_text, | |
depth=text_enc_depth, | |
heads=text_heads, | |
ff_dropout=0.1, | |
ff_mult=2, | |
attn_dropout=0.1, | |
use_rmsnorm=True, | |
ff_glu=True, | |
rotary_pos_emb=True, | |
), | |
) | |
self.speech_transformer = CheckpointedXTransformerEncoder( | |
needs_permute=False, | |
exit_permute=False, | |
max_seq_len=-1, | |
attn_layers=Encoder( | |
dim=dim_speech, | |
depth=speech_enc_depth, | |
heads=speech_heads, | |
ff_dropout=0.1, | |
ff_mult=2, | |
attn_dropout=0.1, | |
use_rmsnorm=True, | |
ff_glu=True, | |
rotary_pos_emb=True, | |
), | |
) | |
else: | |
self.text_transformer = Transformer( | |
causal=False, | |
seq_len=text_seq_len, | |
dim=dim_text, | |
depth=text_enc_depth, | |
heads=text_heads, | |
) | |
self.speech_transformer = Transformer( | |
causal=False, | |
seq_len=speech_seq_len, | |
dim=dim_speech, | |
depth=speech_enc_depth, | |
heads=speech_heads, | |
) | |
self.temperature = nn.Parameter(torch.tensor(1.0)) | |
self.text_mask_percentage = text_mask_percentage | |
self.voice_mask_percentage = voice_mask_percentage | |
self.wav_token_compression = wav_token_compression | |
self.xformers = use_xformers | |
if not use_xformers: | |
self.text_pos_emb = nn.Embedding(text_seq_len, dim_text) | |
self.speech_pos_emb = nn.Embedding(num_speech_tokens, dim_speech) | |
def forward(self, text, speech_tokens, return_loss=False): | |
b, device = text.shape[0], text.device | |
if self.training: | |
text_mask = torch.rand_like(text.float()) > self.text_mask_percentage | |
voice_mask = ( | |
torch.rand_like(speech_tokens.float()) > self.voice_mask_percentage | |
) | |
else: | |
text_mask = torch.ones_like(text.float()).bool() | |
voice_mask = torch.ones_like(speech_tokens.float()).bool() | |
text_emb = self.text_emb(text) | |
speech_emb = self.speech_emb(speech_tokens) | |
if not self.xformers: | |
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device)) | |
speech_emb += self.speech_pos_emb( | |
torch.arange(speech_emb.shape[1], device=device) | |
) | |
enc_text = self.text_transformer(text_emb, mask=text_mask) | |
enc_speech = self.speech_transformer(speech_emb, mask=voice_mask) | |
text_latents = masked_mean(enc_text, text_mask, dim=1) | |
speech_latents = masked_mean(enc_speech, voice_mask, dim=1) | |
text_latents = self.to_text_latent(text_latents) | |
speech_latents = self.to_speech_latent(speech_latents) | |
text_latents, speech_latents = map( | |
lambda t: F.normalize(t, p=2, dim=-1), (text_latents, speech_latents) | |
) | |
temp = self.temperature.exp() | |
if not return_loss: | |
sim = einsum("n d, n d -> n", text_latents, speech_latents) * temp | |
return sim | |
sim = einsum("i d, j d -> i j", text_latents, speech_latents) * temp | |
labels = torch.arange(b, device=device) | |
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2 | |
return loss | |
if __name__ == "__main__": | |
clip = CLVP(text_mask_percentage=0.2, voice_mask_percentage=0.2) | |
clip( | |
torch.randint(0, 256, (2, 120)), | |
torch.tensor([50, 100]), | |
torch.randint(0, 8192, (2, 250)), | |
torch.tensor([101, 102]), | |
return_loss=True, | |
) | |
nonloss = clip( | |
torch.randint(0, 256, (2, 120)), | |
torch.tensor([50, 100]), | |
torch.randint(0, 8192, (2, 250)), | |
torch.tensor([101, 102]), | |
return_loss=False, | |
) | |
print(nonloss.shape) | |