Spaces:
Sleeping
Sleeping
# AGPL: a notification must be added stating that changes have been made to that file. | |
import functools | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList | |
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions | |
from tortoise.models.arch_util import AttentionBlock | |
from tortoise.utils.typical_sampling import TypicalLogitsWarper | |
def null_position_embeddings(range, dim): | |
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device) | |
def _p(t): | |
return t and (len(t), len(t[0]), t[0][0].shape) # kv_cache debug | |
class ResBlock(nn.Module): | |
""" | |
Basic residual convolutional block that uses GroupNorm. | |
""" | |
def __init__(self, chan): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Conv1d(chan, chan, kernel_size=3, padding=1), | |
nn.GroupNorm(chan // 8, chan), | |
nn.ReLU(), | |
nn.Conv1d(chan, chan, kernel_size=3, padding=1), | |
nn.GroupNorm(chan // 8, chan), | |
) | |
def forward(self, x): | |
return F.relu(self.net(x) + x) | |
class GPT2InferenceModel(GPT2PreTrainedModel): | |
def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear, kv_cache): | |
super().__init__(config) | |
self.transformer = gpt | |
self.text_pos_embedding = text_pos_emb | |
self.embeddings = embeddings | |
self.lm_head = nn.Sequential(norm, linear) | |
self.kv_cache = kv_cache | |
def store_mel_emb(self, mel_emb): | |
self.cached_mel_emb = mel_emb | |
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): | |
token_type_ids = kwargs.get("token_type_ids", None) # usually None | |
if not self.kv_cache: | |
past_key_values = None | |
# only last token for inputs_ids if past is defined in kwargs | |
if past_key_values: | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) | |
attention_mask = kwargs.get("attention_mask", None) | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -1].unsqueeze(-1) | |
else: | |
position_ids = None | |
return { | |
"input_ids": input_ids, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"position_ids": position_ids, | |
"attention_mask": attention_mask, | |
"token_type_ids": token_type_ids, | |
} | |
def forward( | |
self, | |
input_ids=None, | |
past_key_values=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
labels=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
assert self.cached_mel_emb is not None | |
assert inputs_embeds is None # Not supported by this inference model. | |
assert labels is None # Training not supported by this inference model. | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
# Create embedding | |
mel_len = self.cached_mel_emb.shape[1] | |
if input_ids.shape[1] != 1: | |
text_inputs = input_ids[:, mel_len:] | |
text_emb = self.embeddings(text_inputs) | |
text_emb = text_emb + self.text_pos_embedding(text_emb) | |
if self.cached_mel_emb.shape[0] != text_emb.shape[0]: | |
mel_emb = self.cached_mel_emb.repeat_interleave( | |
text_emb.shape[0] // self.cached_mel_emb.shape[0], 0 | |
) | |
else: # this outcome only occurs once per loop in most cases | |
mel_emb = self.cached_mel_emb | |
emb = torch.cat([mel_emb, text_emb], dim=1) | |
else: | |
emb = self.embeddings(input_ids) | |
emb = emb + self.text_pos_embedding.get_fixed_embedding( | |
attention_mask.shape[1] - mel_len, attention_mask.device | |
) | |
transformer_outputs = self.transformer( | |
inputs_embeds=emb, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
lm_logits = self.lm_head(hidden_states) | |
if not return_dict: | |
return (lm_logits,) + transformer_outputs[1:] | |
return CausalLMOutputWithCrossAttentions( | |
loss=None, | |
logits=lm_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
cross_attentions=transformer_outputs.cross_attentions, | |
) | |
def _reorder_cache(past, beam_idx): | |
""" | |
This function is used to re-order the :obj:`past_key_values` cache if | |
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is | |
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. | |
""" | |
return tuple( | |
tuple( | |
past_state.index_select(0, beam_idx.to(past_state.device)) | |
for past_state in layer_past | |
) | |
for layer_past in past | |
) | |
class ConditioningEncoder(nn.Module): | |
def __init__( | |
self, | |
spec_dim, | |
embedding_dim, | |
attn_blocks=6, | |
num_attn_heads=4, | |
do_checkpointing=False, | |
mean=False, | |
): | |
super().__init__() | |
attn = [] | |
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1) | |
for a in range(attn_blocks): | |
attn.append(AttentionBlock(embedding_dim, num_attn_heads)) | |
self.attn = nn.Sequential(*attn) | |
self.dim = embedding_dim | |
self.do_checkpointing = do_checkpointing | |
self.mean = mean | |
def forward(self, x): | |
h = self.init(x) | |
h = self.attn(h) | |
if self.mean: | |
return h.mean(dim=2) | |
else: | |
return h[:, :, 0] | |
class LearnedPositionEmbeddings(nn.Module): | |
def __init__(self, seq_len, model_dim, init=0.02): | |
super().__init__() | |
self.emb = nn.Embedding(seq_len, model_dim) | |
# Initializing this way is standard for GPT-2 | |
self.emb.weight.data.normal_(mean=0.0, std=init) | |
def forward(self, x): | |
sl = x.shape[1] | |
return self.emb(torch.arange(0, sl, device=x.device)) | |
def get_fixed_embedding(self, ind, dev): | |
return self.emb(torch.arange(0, ind, device=dev))[ind - 1 : ind] | |
def build_hf_gpt_transformer( | |
layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing | |
): | |
""" | |
GPT-2 implemented by the HuggingFace library. | |
""" | |
from transformers import GPT2Config, GPT2Model | |
gpt_config = GPT2Config( | |
vocab_size=256, # Unused. | |
n_positions=max_mel_seq_len + max_text_seq_len, | |
n_ctx=max_mel_seq_len + max_text_seq_len, | |
n_embd=model_dim, | |
n_layer=layers, | |
n_head=heads, | |
gradient_checkpointing=checkpointing, | |
use_cache=not checkpointing, | |
) | |
gpt = GPT2Model(gpt_config) | |
# Override the built in positional embeddings | |
del ( | |
gpt.wpe | |
) # TODO: figure out relevance in fixing exported model definition: Embedding(1012, 1024) | |
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim) | |
# Built-in token embeddings are unused. | |
del gpt.wte | |
return ( | |
gpt, | |
LearnedPositionEmbeddings(max_mel_seq_len, model_dim), | |
LearnedPositionEmbeddings(max_text_seq_len, model_dim), | |
None, | |
None, | |
) | |
class MelEncoder(nn.Module): | |
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2): | |
super().__init__() | |
self.channels = channels | |
self.encoder = nn.Sequential( | |
nn.Conv1d(mel_channels, channels // 4, kernel_size=3, padding=1), | |
nn.Sequential( | |
*[ResBlock(channels // 4) for _ in range(resblocks_per_reduction)] | |
), | |
nn.Conv1d(channels // 4, channels // 2, kernel_size=3, stride=2, padding=1), | |
nn.GroupNorm(channels // 16, channels // 2), | |
nn.ReLU(), | |
nn.Sequential( | |
*[ResBlock(channels // 2) for _ in range(resblocks_per_reduction)] | |
), | |
nn.Conv1d(channels // 2, channels, kernel_size=3, stride=2, padding=1), | |
nn.GroupNorm(channels // 8, channels), | |
nn.ReLU(), | |
nn.Sequential( | |
*[ResBlock(channels) for _ in range(resblocks_per_reduction)] | |
), | |
) | |
self.reduction = 4 | |
def forward(self, x): | |
for e in self.encoder: | |
x = e(x) | |
return x.permute(0, 2, 1) | |
class UnifiedVoice(nn.Module): | |
def __init__( | |
self, | |
layers=8, | |
model_dim=512, | |
heads=8, | |
max_text_tokens=120, | |
max_mel_tokens=250, | |
max_conditioning_inputs=1, | |
mel_length_compression=1024, | |
number_text_tokens=256, | |
start_text_token=None, | |
number_mel_codes=8194, | |
start_mel_token=8192, | |
stop_mel_token=8193, | |
train_solo_embeddings=False, | |
use_mel_codes_as_input=True, | |
checkpointing=True, | |
types=1, | |
): | |
""" | |
Args: | |
layers: Number of layers in transformer stack. | |
model_dim: Operating dimensions of the transformer | |
heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64 | |
max_text_tokens: Maximum number of text tokens that will be encountered by model. | |
max_mel_tokens: Maximum number of MEL tokens that will be encountered by model. | |
max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s). | |
mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length. | |
number_text_tokens: | |
start_text_token: | |
stop_text_token: | |
number_mel_codes: | |
start_mel_token: | |
stop_mel_token: | |
train_solo_embeddings: | |
use_mel_codes_as_input: | |
checkpointing: | |
""" | |
super().__init__() | |
self.number_text_tokens = number_text_tokens | |
self.start_text_token = ( | |
number_text_tokens * types if start_text_token is None else start_text_token | |
) | |
self.stop_text_token = 0 | |
self.number_mel_codes = number_mel_codes | |
self.start_mel_token = start_mel_token | |
self.stop_mel_token = stop_mel_token | |
self.layers = layers | |
self.heads = heads | |
self.max_mel_tokens = max_mel_tokens | |
self.max_text_tokens = max_text_tokens | |
self.model_dim = model_dim | |
self.max_conditioning_inputs = max_conditioning_inputs | |
self.mel_length_compression = mel_length_compression | |
self.conditioning_encoder = ConditioningEncoder( | |
80, model_dim, num_attn_heads=heads | |
) | |
self.text_embedding = nn.Embedding( | |
self.number_text_tokens * types + 1, model_dim | |
) | |
if use_mel_codes_as_input: | |
self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim) | |
else: | |
self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1) | |
( | |
self.gpt, | |
self.mel_pos_embedding, | |
self.text_pos_embedding, | |
self.mel_layer_pos_embedding, | |
self.text_layer_pos_embedding, | |
) = build_hf_gpt_transformer( | |
layers, | |
model_dim, | |
heads, | |
self.max_mel_tokens + 2 + self.max_conditioning_inputs, | |
self.max_text_tokens + 2, | |
checkpointing, | |
) | |
if train_solo_embeddings: | |
self.mel_solo_embedding = nn.Parameter( | |
torch.randn(1, 1, model_dim) * 0.02, requires_grad=True | |
) | |
self.text_solo_embedding = nn.Parameter( | |
torch.randn(1, 1, model_dim) * 0.02, requires_grad=True | |
) | |
else: | |
self.mel_solo_embedding = 0 | |
self.text_solo_embedding = 0 | |
self.final_norm = nn.LayerNorm(model_dim) | |
self.text_head = nn.Linear(model_dim, self.number_text_tokens * types + 1) | |
self.mel_head = nn.Linear(model_dim, self.number_mel_codes) | |
# Initialize the embeddings per the GPT-2 scheme | |
embeddings = [self.text_embedding] | |
if use_mel_codes_as_input: | |
embeddings.append(self.mel_embedding) | |
for module in embeddings: | |
module.weight.data.normal_(mean=0.0, std=0.02) | |
def post_init_gpt2_config(self, kv_cache=True): | |
seq_length = self.max_mel_tokens + self.max_text_tokens + 2 | |
gpt_config = GPT2Config( | |
vocab_size=self.max_mel_tokens, | |
n_positions=seq_length, | |
n_ctx=seq_length, | |
n_embd=self.model_dim, | |
n_layer=self.layers, | |
n_head=self.heads, | |
gradient_checkpointing=False, | |
use_cache=True, | |
) | |
self.inference_model = GPT2InferenceModel( | |
gpt_config, | |
self.gpt, | |
self.mel_pos_embedding, | |
self.mel_embedding, | |
self.final_norm, | |
self.mel_head, | |
kv_cache=kv_cache, | |
) | |
# self.inference_model = PrunedGPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head) | |
self.gpt.wte = self.mel_embedding | |
def build_aligned_inputs_and_targets(self, input, start_token, stop_token): | |
inp = F.pad(input, (1, 0), value=start_token) | |
tar = F.pad(input, (0, 1), value=stop_token) | |
return inp, tar | |
def set_mel_padding(self, mel_input_tokens, wav_lengths): | |
""" | |
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in | |
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required | |
preformatting to create a working TTS model. | |
""" | |
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>). | |
mel_lengths = torch.div( | |
wav_lengths, self.mel_length_compression, rounding_mode="trunc" | |
) | |
for b in range(len(mel_lengths)): | |
actual_end = ( | |
mel_lengths[b] + 1 | |
) # Due to the convolutional nature of how these tokens are generated, it would be best if the model predicts a token past the actual last token. | |
if actual_end < mel_input_tokens.shape[-1]: | |
mel_input_tokens[b, actual_end:] = self.stop_mel_token | |
return mel_input_tokens | |
def get_logits( | |
self, | |
speech_conditioning_inputs, | |
first_inputs, | |
first_head, | |
second_inputs=None, | |
second_head=None, | |
get_attns=False, | |
return_latent=False, | |
): | |
if second_inputs is not None: | |
emb = torch.cat( | |
[speech_conditioning_inputs, first_inputs, second_inputs], dim=1 | |
) | |
else: | |
emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1) | |
gpt_out = self.gpt( | |
inputs_embeds=emb, return_dict=True, output_attentions=get_attns | |
) | |
if get_attns: | |
return gpt_out.attentions | |
enc = gpt_out.last_hidden_state[ | |
:, 1: | |
] # The first logit is tied to the speech_conditioning_input | |
enc = self.final_norm(enc) | |
if return_latent: | |
return ( | |
enc[ | |
:, | |
speech_conditioning_inputs.shape[ | |
1 | |
] : speech_conditioning_inputs.shape[1] | |
+ first_inputs.shape[1], | |
], | |
enc[:, -second_inputs.shape[1] :], | |
) | |
first_logits = enc[:, : first_inputs.shape[1]] | |
first_logits = first_head(first_logits) | |
first_logits = first_logits.permute(0, 2, 1) | |
if second_inputs is not None: | |
second_logits = enc[:, -second_inputs.shape[1] :] | |
second_logits = second_head(second_logits) | |
second_logits = second_logits.permute(0, 2, 1) | |
return first_logits, second_logits | |
else: | |
return first_logits | |
def get_conditioning(self, speech_conditioning_input): | |
speech_conditioning_input = ( | |
speech_conditioning_input.unsqueeze(1) | |
if len(speech_conditioning_input.shape) == 3 | |
else speech_conditioning_input | |
) | |
conds = [] | |
for j in range(speech_conditioning_input.shape[1]): | |
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) | |
conds = torch.stack(conds, dim=1) | |
conds = conds.mean(dim=1) | |
return conds | |
def forward( | |
self, | |
speech_conditioning_latent, | |
text_inputs, | |
text_lengths, | |
mel_codes, | |
wav_lengths, | |
types=None, | |
text_first=True, | |
raw_mels=None, | |
return_attentions=False, | |
return_latent=False, | |
clip_inputs=True, | |
): | |
""" | |
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode | |
(actuated by `text_first`). | |
speech_conditioning_input: MEL float tensor, (b,1024) | |
text_inputs: long tensor, (b,t) | |
text_lengths: long tensor, (b,) | |
mel_inputs: long tensor, (b,m) | |
wav_lengths: long tensor, (b,) | |
raw_mels: MEL float tensor (b,80,s) | |
If return_attentions is specified, only logits are returned. | |
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned. | |
If clip_inputs is True, the inputs will be clipped to the smallest input size across each input modality. | |
""" | |
# Types are expressed by expanding the text embedding space. | |
if types is not None: | |
text_inputs = text_inputs * (1 + types).unsqueeze(-1) | |
if clip_inputs: | |
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by | |
# chopping the inputs by the maximum actual length. | |
max_text_len = text_lengths.max() | |
text_inputs = text_inputs[:, :max_text_len] | |
max_mel_len = wav_lengths.max() // self.mel_length_compression | |
mel_codes = mel_codes[:, :max_mel_len] | |
if raw_mels is not None: | |
raw_mels = raw_mels[:, :, : max_mel_len * 4] | |
mel_codes = self.set_mel_padding(mel_codes, wav_lengths) | |
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) | |
mel_codes = F.pad(mel_codes, (0, 1), value=self.stop_mel_token) | |
conds = speech_conditioning_latent.unsqueeze(1) | |
text_inputs, text_targets = self.build_aligned_inputs_and_targets( | |
text_inputs, self.start_text_token, self.stop_text_token | |
) | |
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding( | |
text_inputs | |
) | |
mel_codes, mel_targets = self.build_aligned_inputs_and_targets( | |
mel_codes, self.start_mel_token, self.stop_mel_token | |
) | |
if raw_mels is not None: | |
mel_inp = F.pad(raw_mels, (0, 8)) | |
else: | |
mel_inp = mel_codes | |
mel_emb = self.mel_embedding(mel_inp) | |
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes) | |
if text_first: | |
text_logits, mel_logits = self.get_logits( | |
conds, | |
text_emb, | |
self.text_head, | |
mel_emb, | |
self.mel_head, | |
get_attns=return_attentions, | |
return_latent=return_latent, | |
) | |
if return_latent: | |
return mel_logits[ | |
:, :-2 | |
] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass. | |
else: | |
mel_logits, text_logits = self.get_logits( | |
conds, | |
mel_emb, | |
self.mel_head, | |
text_emb, | |
self.text_head, | |
get_attns=return_attentions, | |
return_latent=return_latent, | |
) | |
if return_latent: | |
return text_logits[ | |
:, :-2 | |
] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass. | |
if return_attentions: | |
return mel_logits | |
loss_text = F.cross_entropy(text_logits, text_targets.long()) | |
loss_mel = F.cross_entropy(mel_logits, mel_targets.long()) | |
return loss_text.mean(), loss_mel.mean(), mel_logits | |
def inference_speech( | |
self, | |
speech_conditioning_latent, | |
text_inputs, | |
input_tokens=None, | |
num_return_sequences=1, | |
max_generate_length=None, | |
typical_sampling=False, | |
typical_mass=0.9, | |
**hf_generate_kwargs | |
): | |
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) | |
text_inputs, text_targets = self.build_aligned_inputs_and_targets( | |
text_inputs, self.start_text_token, self.stop_text_token | |
) | |
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding( | |
text_inputs | |
) | |
conds = speech_conditioning_latent.unsqueeze(1) | |
emb = torch.cat([conds, text_emb], dim=1) | |
self.inference_model.store_mel_emb(emb) | |
fake_inputs = torch.full( | |
( | |
emb.shape[0], | |
conds.shape[1] + emb.shape[1], | |
), | |
fill_value=1, | |
dtype=torch.long, | |
device=text_inputs.device, | |
) | |
fake_inputs[:, -1] = self.start_mel_token | |
trunc_index = fake_inputs.shape[1] | |
if input_tokens is None: | |
inputs = fake_inputs | |
else: | |
assert ( | |
num_return_sequences % input_tokens.shape[0] == 0 | |
), "The number of return sequences must be divisible by the number of input sequences" | |
fake_inputs = fake_inputs.repeat(num_return_sequences, 1) | |
input_tokens = input_tokens.repeat( | |
num_return_sequences // input_tokens.shape[0], 1 | |
) | |
inputs = torch.cat([fake_inputs, input_tokens], dim=1) | |
logits_processor = ( | |
LogitsProcessorList([TypicalLogitsWarper(mass=typical_mass)]) | |
if typical_sampling | |
else LogitsProcessorList() | |
) # TODO disable this | |
max_length = ( | |
trunc_index + self.max_mel_tokens - 1 | |
if max_generate_length is None | |
else trunc_index + max_generate_length | |
) | |
gen = self.inference_model.generate( | |
inputs, | |
bos_token_id=self.start_mel_token, | |
pad_token_id=self.stop_mel_token, | |
eos_token_id=self.stop_mel_token, | |
max_length=max_length, | |
logits_processor=logits_processor, | |
num_return_sequences=num_return_sequences, | |
**hf_generate_kwargs | |
) | |
return gen[:, trunc_index:] | |
class PrunedGPT2InferenceModel(GPT2PreTrainedModel): | |
def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear): | |
super().__init__(config) | |
self.transformer = gpt | |
self.text_pos_embedding = text_pos_emb | |
self.embeddings = embeddings | |
self.lm_head = nn.Sequential(norm, linear) | |
def store_mel_emb(self, mel_emb): | |
self.cached_mel_emb = mel_emb | |
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): | |
token_type_ids = kwargs.get("token_type_ids", None) | |
# only last token for inputs_ids if past is defined in kwargs | |
print(past) | |
if past: | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) | |
attention_mask = kwargs.get("attention_mask", None) | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
print(position_ids) | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
print(position_ids) | |
if past: | |
position_ids = position_ids[:, -1].unsqueeze(-1) | |
else: | |
position_ids = None | |
return { | |
"input_ids": input_ids, | |
"past_key_values": past, | |
"use_cache": kwargs.get("use_cache"), | |
"position_ids": position_ids, | |
"attention_mask": attention_mask, | |
"token_type_ids": token_type_ids, | |
} | |
def forward(self, input_ids=None, attention_mask=None, position_ids=None, **kwargs): | |
past_key_values = None | |
token_type_ids = None | |
head_mask = None | |
inputs_embeds = None | |
encoder_hidden_states = None | |
encoder_attention_mask = None | |
labels = None | |
use_cache = True | |
output_attentions = False | |
output_hidden_states = False | |
return_dict = True | |
# | |
assert self.cached_mel_emb is not None | |
assert inputs_embeds is None # Not supported by this inference model. | |
assert labels is None # Training not supported by this inference model. | |
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
""" | |
print(attention_mask) | |
print(position_ids) | |
print(attention_mask.dtype) | |
print(position_ids.dtype) | |
""" | |
""" | |
attention_mask=tensor([[1, 1, 1, ..., 1, 1, 1], | |
[1, 1, 1, ..., 1, 1, 1], | |
[1, 1, 1, ..., 1, 1, 1], | |
..., | |
[1, 1, 1, ..., 1, 1, 1], | |
[1, 1, 1, ..., 1, 1, 1], | |
[1, 1, 1, ..., 1, 1, 1]], device='cuda:0') | |
""" | |
# Create embedding | |
mel_len = self.cached_mel_emb.shape[1] | |
text_inputs = input_ids[:, mel_len:] | |
text_emb = self.embeddings(text_inputs) | |
text_emb = text_emb + self.text_pos_embedding(text_emb) | |
mel_emb = self.cached_mel_emb.repeat_interleave( | |
text_emb.shape[0] // self.cached_mel_emb.shape[0], 0 | |
) | |
emb = torch.cat([mel_emb, text_emb], dim=1) | |
transformer_outputs = self.transformer( | |
inputs_embeds=emb, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
lm_logits = self.lm_head(hidden_states) | |
if not return_dict: | |
return (lm_logits,) + transformer_outputs[1:] | |
return CausalLMOutputWithCrossAttentions( | |
loss=None, | |
logits=lm_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
cross_attentions=transformer_outputs.cross_attentions, | |
) | |
def _reorder_cache(past, beam_idx): | |
""" | |
This function is used to re-order the :obj:`past_key_values` cache if | |
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is | |
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. | |
""" | |
return tuple( | |
tuple( | |
past_state.index_select(0, beam_idx.to(past_state.device)) | |
for past_state in layer_past | |
) | |
for layer_past in past | |
) | |
if __name__ == "__main__": | |
gpt = UnifiedVoice( | |
model_dim=256, | |
heads=4, | |
train_solo_embeddings=True, | |
use_mel_codes_as_input=True, | |
max_conditioning_inputs=4, | |
) | |
l = gpt( | |
torch.randn(2, 3, 80, 800), | |
torch.randint(high=120, size=(2, 120)), | |
torch.tensor([32, 120]), | |
torch.randint(high=8192, size=(2, 250)), | |
torch.tensor([250 * 256, 195 * 256]), | |
) | |
gpt.text_forward( | |
torch.randn(2, 80, 800), | |
torch.randint(high=50, size=(2, 80)), | |
torch.tensor([32, 80]), | |
) | |