Spaces:
Sleeping
Sleeping
import os | |
import sys | |
from random import randint | |
from typing import List, Optional, Set, Union | |
from tortoise.utils.audio import get_voices, load_audio, load_voices | |
from tortoise.utils.text import split_and_recombine_text | |
def get_all_voices(extra_voice_dirs_str: str = ""): | |
extra_voice_dirs = extra_voice_dirs_str.split(",") if extra_voice_dirs_str else [] | |
return sorted(get_voices(extra_voice_dirs)), extra_voice_dirs | |
def parse_voice_str(voice_str: str, all_voices: List[str]): | |
selected_voices = all_voices if voice_str == "all" else voice_str.split(",") | |
selected_voices = [v.split("&") if "&" in v else [v] for v in selected_voices] | |
for voices in selected_voices: | |
for v in voices: | |
if v != "random" and v not in all_voices: | |
raise ValueError( | |
f"voice {v} not available, use --list-voices to see available voices." | |
) | |
return selected_voices | |
def voice_loader(selected_voices: list, extra_voice_dirs: List[str]): | |
for voices in selected_voices: | |
yield voices, *load_voices(voices, extra_voice_dirs) | |
def parse_multiarg_text(text: List[str]): | |
return (" ".join(text) if text else "".join(line for line in sys.stdin)).strip() | |
def split_text(text: str, text_split: str): | |
if text_split: | |
desired_length, max_length = map(int, text_split.split(",")) | |
if desired_length > max_length: | |
raise ValueError( | |
f"--text-split: desired_length ({desired_length}) must be <= max_length ({max_length})" | |
) | |
texts = split_and_recombine_text(text, desired_length, max_length) | |
else: | |
texts = split_and_recombine_text(text) | |
# | |
if not texts: | |
raise ValueError("no text provided") | |
return texts | |
def validate_output_dir(output_dir: str, selected_voices: list, candidates: int): | |
if output_dir: | |
os.makedirs(output_dir, exist_ok=True) | |
else: | |
if len(selected_voices) > 1: | |
raise ValueError('cannot have multiple voices without --output-dir"') | |
if candidates > 1: | |
raise ValueError('cannot have multiple candidates without --output-dir"') | |
return output_dir | |
def check_pydub(play: bool): | |
if play: | |
try: | |
import pydub | |
import pydub.playback | |
return pydub | |
except ImportError: | |
raise RuntimeError( | |
'--play requires pydub to be installed, which can be done with "pip install pydub"' | |
) | |
def get_seed(seed: Optional[int]): | |
return randint(0, 2**32 - 1) if seed is None else seed | |
from pathlib import Path | |
from typing import Any, Callable | |
import torch | |
import torchaudio | |
def run_and_save_tts( | |
call_tts, | |
text, | |
output_dir: Path, | |
return_deterministic_state, | |
return_filepaths=False, | |
voicefixer=True, | |
): | |
output_dir.mkdir(exist_ok=True) | |
if return_deterministic_state: | |
gen, dbg = call_tts(text) | |
torch.save(dbg, output_dir / "dbg.pt") | |
else: | |
gen = call_tts(text) | |
# | |
if not isinstance(gen, list): | |
gen = [gen] | |
gen = [g.squeeze(0).cpu() for g in gen] | |
fps = [] | |
for i, g in enumerate(gen): | |
fps.append(output_dir / f"{i}.wav") | |
save_gen_with_voicefix(g, fps[-1], squeeze=False, voicefixer=voicefixer) | |
# torchaudio.save(output_dir/f'{i}.wav', g, 24000) | |
return fps if return_filepaths else gen | |
def infer_on_texts( | |
call_tts: Callable[[str], Any], | |
texts: List[str], | |
output_dir: Union[str, Path], | |
return_deterministic_state: bool, | |
lines_to_regen: Set[int], | |
logger=print, | |
return_filepaths=False, | |
voicefixer=True, | |
): | |
audio_chunks = [] | |
base_p = Path(output_dir) | |
base_p.mkdir(exist_ok=True) | |
for text_idx, text in enumerate(texts): | |
line_p = base_p / f"{text_idx}" | |
line_p.mkdir(exist_ok=True) | |
# | |
if text_idx not in lines_to_regen: | |
files = list(line_p.glob("*.wav")) | |
if files: | |
logger(f"loading existing audio fragments for [{text_idx}]") | |
audio_chunks.append([load_audio(str(f), 24000) for f in files]) | |
continue | |
else: | |
logger(f"no existing audio fragment for [{text_idx}]") | |
# | |
logger(f"generating audio for text {text_idx}: {text}") | |
audio_chunks.append( | |
run_and_save_tts( | |
call_tts, | |
text, | |
line_p, | |
return_deterministic_state, | |
voicefixer=voicefixer, | |
) | |
) | |
fnames = [] | |
results = [] | |
for i in range(len(audio_chunks[0])): | |
resultant = torch.cat([c[i] for c in audio_chunks], dim=-1) | |
fnames.append(base_p / f"combined-{i}.wav") | |
save_gen_with_voicefix( | |
resultant, fnames[-1], squeeze=False, voicefixer=False | |
) # do not run fix on combined!! | |
results.append(resultant) | |
# torchaudio.save(base_p/'combined.wav', resultant, 24000) | |
return fnames if return_filepaths else results | |
from voicefixer import VoiceFixer | |
vfixer = VoiceFixer() | |
def save_gen_with_voicefix(g, fpath, squeeze=True, voicefixer=True): | |
torchaudio.save(fpath, g.squeeze(0).cpu() if squeeze else g, 24000, format="wav") | |
if voicefixer: | |
vfixer.restore( | |
input=fpath, | |
output=fpath, | |
cuda=True, | |
mode=0, | |
# your_vocoder_func = convert_mel_to_wav # TODO test if integration with unvinet improves things | |
) | |