Spaces:
Running
Running
# AGPL: a notification must be added stating that changes have been made to that file. | |
import os | |
import shutil | |
from pathlib import Path | |
import streamlit as st | |
from random import randint | |
from tortoise.api import MODELS_DIR | |
from tortoise.inference import ( | |
infer_on_texts, | |
run_and_save_tts, | |
split_and_recombine_text, | |
) | |
from tortoise.utils.diffusion import SAMPLERS | |
from app_utils.filepicker import st_file_selector | |
from app_utils.conf import TortoiseConfig | |
from app_utils.funcs import ( | |
timeit, | |
load_model, | |
list_voices, | |
load_voice_conditionings, | |
) | |
LATENT_MODES = [ | |
"Tortoise original (bad)", | |
"average per 4.27s (broken on small files)", | |
"average per voice file (broken on small files)", | |
] | |
def main(): | |
conf = TortoiseConfig() | |
voice_samples, conditioning_latents = None, None | |
with st.expander("Create New Voice", expanded=True): | |
if "file_uploader_key" not in st.session_state: | |
st.session_state["file_uploader_key"] = str(randint(1000, 100000000)) | |
st.session_state["text_input_key"] = str(randint(1000, 100000000)) | |
uploaded_files = st.file_uploader( | |
"Upload Audio Samples for a New Voice", | |
accept_multiple_files=True, | |
type=["wav"], | |
key=st.session_state["file_uploader_key"] | |
) | |
voice_name = st.text_input( | |
"New Voice Name", | |
help="Enter a name for your new voice.", | |
value="", | |
key=st.session_state["text_input_key"] | |
) | |
create_voice_button = st.button( | |
"Create Voice", | |
disabled = ((voice_name.strip() == "") | (len(uploaded_files) == 0)) | |
) | |
if create_voice_button: | |
st.write(st.session_state) | |
with st.spinner(f"Creating new voice: {voice_name}"): | |
new_voice_name = voice_name.strip().replace(" ", "_") | |
voices_dir = f'./tortoise/voices/{new_voice_name}/' | |
if os.path.exists(voices_dir): | |
shutil.rmtree(voices_dir) | |
os.makedirs(voices_dir) | |
for index, uploaded_file in enumerate(uploaded_files): | |
bytes_data = uploaded_file.read() | |
with open(f"{voices_dir}voice_sample{index}.wav", "wb") as wav_file: | |
wav_file.write(bytes_data) | |
#create conditioning latents and save them | |
voice_samples, conditioning_latents = get_condi( | |
[new_voice_name], [] | |
) | |
st.session_state["text_input_key"] = str(randint(1000, 100000000)) | |
st.session_state["file_uploader_key"] = str(randint(1000, 100000000)) | |
st.experimental_rerun() | |
text = st.text_area( | |
"Text", | |
help="Text to speak.", | |
value="The expressiveness of autoregressive transformers is literally nuts! I absolutely adore them.", | |
) | |
voices = [v for v in os.listdir("tortoise/voices") if v != "cond_latent_example"] | |
voice = st.selectbox( | |
"Voice", | |
voices, | |
help="Selects the voice to use for generation. See options in voices/ directory (and add your own!) " | |
"Use the & character to join two voices together. Use a comma to perform inference on multiple voices.", | |
index=0, | |
) | |
preset = st.selectbox( | |
"Preset", | |
( | |
"single_sample", | |
"ultra_fast", | |
"very_fast", | |
"ultra_fast_old", | |
"fast", | |
"standard", | |
"high_quality", | |
), | |
help="Which voice preset to use.", | |
index=1, | |
) | |
with st.expander("Advanced"): | |
col1, col2 = st.columns(2) | |
with col1: | |
"""#### Model parameters""" | |
candidates = st.number_input( | |
"Candidates", | |
help="How many output candidates to produce per-voice.", | |
value=1, | |
) | |
latent_averaging_mode = st.radio( | |
"Latent averaging mode", | |
LATENT_MODES, | |
help="How voice samples should be averaged together.", | |
index=0, | |
) | |
sampler = st.radio( | |
"Sampler", | |
#SAMPLERS, | |
["dpm++2m", "p", "ddim"], | |
help="Diffusion sampler. Note that dpm++2m is experimental and typically requires more steps.", | |
index=1, | |
) | |
steps = st.number_input( | |
"Steps", | |
help="Override the steps used for diffusion (default depends on preset)", | |
value=10, | |
) | |
seed = st.number_input( | |
"Seed", | |
help="Random seed which can be used to reproduce results.", | |
value=-1, | |
) | |
if seed == -1: | |
seed = None | |
voice_fixer = st.checkbox( | |
"Voice fixer", | |
help="Use `voicefixer` to improve audio quality. This is a post-processing step which can be applied to any output.", | |
value=True, | |
) | |
"""#### Directories""" | |
output_path = st.text_input( | |
"Output Path", help="Where to store outputs.", value="results/" | |
) | |
with col2: | |
"""#### Optimizations""" | |
high_vram = not st.checkbox( | |
"Low VRAM", | |
help="Re-enable default offloading behaviour of tortoise", | |
value=True, | |
) | |
half = st.checkbox( | |
"Half-Precision", | |
help="Enable autocast to half precision for autoregressive model", | |
value=False, | |
) | |
kv_cache = st.checkbox( | |
"Key-Value Cache", | |
help="Enable kv_cache usage, leading to drastic speedups but worse memory usage", | |
value=True, | |
) | |
cond_free = st.checkbox( | |
"Conditioning Free", | |
help="Force conditioning free diffusion", | |
value=True, | |
) | |
no_cond_free = st.checkbox( | |
"Force Not Conditioning Free", | |
help="Force disable conditioning free diffusion", | |
value=False, | |
) | |
"""#### Text Splitting""" | |
min_chars_to_split = st.number_input( | |
"Min Chars to Split", | |
help="Minimum number of characters to split text on", | |
min_value=50, | |
value=200, | |
step=1, | |
) | |
"""#### Debug""" | |
produce_debug_state = st.checkbox( | |
"Produce Debug State", | |
help="Whether or not to produce debug_state.pth, which can aid in reproducing problems. Defaults to true.", | |
value=True, | |
) | |
ar_checkpoint = "." | |
diff_checkpoint = "." | |
if st.button("Update Basic Settings"): | |
conf.update( | |
EXTRA_VOICES_DIR=extra_voices_dir, | |
LOW_VRAM=not high_vram, | |
AR_CHECKPOINT=ar_checkpoint, | |
DIFF_CHECKPOINT=diff_checkpoint, | |
) | |
ar_checkpoint = None | |
diff_checkpoint = None | |
tts = load_model(MODELS_DIR, high_vram, kv_cache, ar_checkpoint, diff_checkpoint) | |
if st.button("Start"): | |
assert latent_averaging_mode | |
assert preset | |
assert voice | |
def show_generation(fp, filename: str): | |
""" | |
audio_buffer = BytesIO() | |
save_gen_with_voicefix(g, audio_buffer, squeeze=False) | |
torchaudio.save(audio_buffer, g, 24000, format='wav') | |
""" | |
st.audio(str(fp), format="audio/wav") | |
st.download_button( | |
"Download sample", | |
str(fp), | |
file_name=filename, # this doesn't actually seem to work lol | |
) | |
with st.spinner( | |
f"Generating {candidates} candidates for voice {voice} (seed={seed}). You can see progress in the terminal" | |
): | |
os.makedirs(output_path, exist_ok=True) | |
selected_voices = voice.split(",") | |
for k, selected_voice in enumerate(selected_voices): | |
if "&" in selected_voice: | |
voice_sel = selected_voice.split("&") | |
else: | |
voice_sel = [selected_voice] | |
voice_samples, conditioning_latents = load_voice_conditionings( | |
voice_sel, [] | |
) | |
voice_path = Path(os.path.join(output_path, selected_voice)) | |
with timeit( | |
f"Generating {candidates} candidates for voice {selected_voice} (seed={seed})" | |
): | |
nullable_kwargs = { | |
k: v | |
for k, v in zip( | |
["sampler", "diffusion_iterations", "cond_free"], | |
[sampler, steps, cond_free], | |
) | |
if v is not None | |
} | |
def call_tts(text: str): | |
return tts.tts_with_preset( | |
text, | |
k=candidates, | |
voice_samples=voice_samples, | |
conditioning_latents=conditioning_latents, | |
preset=preset, | |
use_deterministic_seed=seed, | |
return_deterministic_state=True, | |
cvvp_amount=0.0, | |
half=half, | |
latent_averaging_mode=LATENT_MODES.index( | |
latent_averaging_mode | |
), | |
**nullable_kwargs, | |
) | |
if len(text) < min_chars_to_split: | |
filepaths = run_and_save_tts( | |
call_tts, | |
text, | |
voice_path, | |
return_deterministic_state=True, | |
return_filepaths=True, | |
voicefixer=voice_fixer, | |
) | |
for i, fp in enumerate(filepaths): | |
show_generation(fp, f"{selected_voice}-text-{i}.wav") | |
else: | |
desired_length = int(min_chars_to_split) | |
texts = split_and_recombine_text( | |
text, desired_length, desired_length + 100 | |
) | |
filepaths = infer_on_texts( | |
call_tts, | |
texts, | |
voice_path, | |
return_deterministic_state=True, | |
return_filepaths=True, | |
lines_to_regen=set(range(len(texts))), | |
voicefixer=voice_fixer, | |
) | |
for i, fp in enumerate(filepaths): | |
show_generation(fp, f"{selected_voice}-text-{i}.wav") | |
if produce_debug_state: | |
"""Debug states can be found in the output directory""" | |
if __name__ == "__main__": | |
main() | |