Spaces:
Running
Running
import os | |
from glob import glob | |
from typing import Dict, List | |
import librosa | |
import numpy as np | |
import torch | |
import torchaudio | |
from scipy.io.wavfile import read | |
from tortoise.utils.stft import STFT | |
BUILTIN_VOICES_DIR = os.path.join( | |
os.path.dirname(os.path.realpath(__file__)), "../voices" | |
) | |
def load_wav_to_torch(full_path): | |
sampling_rate, data = read(full_path) | |
if data.dtype == np.int32: | |
norm_fix = 2**31 | |
elif data.dtype == np.int16: | |
norm_fix = 2**15 | |
elif data.dtype == np.float16 or data.dtype == np.float32: | |
norm_fix = 1.0 | |
else: | |
raise NotImplementedError(f"Provided data dtype not supported: {data.dtype}") | |
return (torch.FloatTensor(data.astype(np.float32)) / norm_fix, sampling_rate) | |
def check_audio(audio, audiopath: str): | |
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk. | |
# '2' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds. | |
if torch.any(audio > 2) or not torch.any(audio < 0): | |
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}") | |
audio.clip_(-1, 1) | |
def read_audio_file(audiopath: str): | |
if audiopath[-4:] == ".wav": | |
audio, lsr = load_wav_to_torch(audiopath) | |
elif audiopath[-4:] == ".mp3": | |
audio, lsr = librosa.load(audiopath, sr=None) | |
audio = torch.FloatTensor(audio) | |
else: | |
assert False, f"Unsupported audio format provided: {audiopath[-4:]}" | |
# Remove any channel data. | |
if len(audio.shape) > 1: | |
if audio.shape[0] < 5: | |
audio = audio[0] | |
else: | |
assert audio.shape[1] < 5 | |
audio = audio[:, 0] | |
return audio, lsr | |
def load_required_audio(audiopath: str): | |
audio, lsr = read_audio_file(audiopath) | |
audios = [ | |
torchaudio.functional.resample(audio, lsr, sampling_rate) | |
for sampling_rate in (22050, 24000) | |
] | |
for audio in audios: | |
check_audio(audio, audiopath) | |
return [audio.unsqueeze(0) for audio in audios] | |
def load_audio(audiopath, sampling_rate): | |
audio, lsr = read_audio_file(audiopath) | |
if lsr != sampling_rate: | |
audio = torchaudio.functional.resample(audio, lsr, sampling_rate) | |
check_audio(audio, audiopath) | |
return audio.unsqueeze(0) | |
TACOTRON_MEL_MAX = 2.3143386840820312 | |
TACOTRON_MEL_MIN = -11.512925148010254 | |
def denormalize_tacotron_mel(norm_mel): | |
return ((norm_mel + 1) / 2) * ( | |
TACOTRON_MEL_MAX - TACOTRON_MEL_MIN | |
) + TACOTRON_MEL_MIN | |
def normalize_tacotron_mel(mel): | |
return 2 * ((mel - TACOTRON_MEL_MIN) / (TACOTRON_MEL_MAX - TACOTRON_MEL_MIN)) - 1 | |
def dynamic_range_compression(x, C=1, clip_val=1e-5): | |
""" | |
PARAMS | |
------ | |
C: compression factor | |
""" | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression(x, C=1): | |
""" | |
PARAMS | |
------ | |
C: compression factor used to compress | |
""" | |
return torch.exp(x) / C | |
def get_voices(extra_voice_dirs: List[str] = []): | |
dirs = [BUILTIN_VOICES_DIR] + extra_voice_dirs | |
voices: Dict[str, List[str]] = {} | |
for d in dirs: | |
subs = os.listdir(d) | |
for sub in subs: | |
subj = os.path.join(d, sub) | |
if os.path.isdir(subj): | |
voices[sub] = ( | |
list(glob(f"{subj}/*.wav")) | |
+ list(glob(f"{subj}/*.mp3")) | |
+ list(glob(f"{subj}/*.pth")) | |
) | |
return voices | |
def load_voice(voice: str, extra_voice_dirs: List[str] = []): | |
if voice == "random": | |
return None, None | |
voices = get_voices(extra_voice_dirs) | |
paths = voices[voice] | |
if len(paths) == 1 and paths[0].endswith(".pth"): | |
return None, torch.load(paths[0]) | |
else: | |
conds = [] | |
for cond_path in paths: | |
c = load_required_audio(cond_path) | |
conds.append(c) | |
return conds, None | |
def load_voices(voices: List[str], extra_voice_dirs: List[str] = []): | |
latents = [] | |
clips = [] | |
for voice in voices: | |
if voice == "random": | |
if len(voices) > 1: | |
print( | |
"Cannot combine a random voice with a non-random voice. Just using a random voice." | |
) | |
return None, None | |
clip, latent = load_voice(voice, extra_voice_dirs) | |
if latent is None: | |
assert ( | |
len(latents) == 0 | |
), "Can only combine raw audio voices or latent voices, not both. Do it yourself if you want this." | |
clips.extend(clip) | |
elif clip is None: | |
assert ( | |
len(clips) == 0 | |
), "Can only combine raw audio voices or latent voices, not both. Do it yourself if you want this." | |
latents.append(latent) | |
if len(latents) == 0: | |
return clips, None | |
else: | |
latents_0 = torch.stack([l[0] for l in latents], dim=0).mean(dim=0) | |
latents_1 = torch.stack([l[1] for l in latents], dim=0).mean(dim=0) | |
latents = (latents_0, latents_1) | |
return None, latents | |
class TacotronSTFT(torch.nn.Module): | |
def __init__( | |
self, | |
filter_length=1024, | |
hop_length=256, | |
win_length=1024, | |
n_mel_channels=80, | |
sampling_rate=22050, | |
mel_fmin=0.0, | |
mel_fmax=8000.0, | |
): | |
super(TacotronSTFT, self).__init__() | |
self.n_mel_channels = n_mel_channels | |
self.sampling_rate = sampling_rate | |
self.stft_fn = STFT(filter_length, hop_length, win_length) | |
from librosa.filters import mel as librosa_mel_fn | |
mel_basis = librosa_mel_fn( | |
sr=sampling_rate, | |
n_fft=filter_length, | |
n_mels=n_mel_channels, | |
fmin=mel_fmin, | |
fmax=mel_fmax, | |
) | |
mel_basis = torch.from_numpy(mel_basis).float() | |
self.register_buffer("mel_basis", mel_basis) | |
def spectral_normalize(self, magnitudes): | |
output = dynamic_range_compression(magnitudes) | |
return output | |
def spectral_de_normalize(self, magnitudes): | |
output = dynamic_range_decompression(magnitudes) | |
return output | |
def mel_spectrogram(self, y): | |
"""Computes mel-spectrograms from a batch of waves | |
PARAMS | |
------ | |
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] | |
RETURNS | |
------- | |
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) | |
""" | |
assert torch.min(y.data) >= -10 | |
assert torch.max(y.data) <= 10 | |
y = torch.clip(y, min=-1, max=1) | |
magnitudes, phases = self.stft_fn.transform(y) | |
magnitudes = magnitudes.data | |
mel_output = torch.matmul(self.mel_basis, magnitudes) | |
mel_output = self.spectral_normalize(mel_output) | |
return mel_output | |
def wav_to_univnet_mel(wav, do_normalization=False, device="cuda"): | |
stft = TacotronSTFT(1024, 256, 1024, 100, 24000, 0, 12000) | |
stft = stft.to(device) | |
mel = stft.mel_spectrogram(wav) | |
if do_normalization: | |
mel = normalize_tacotron_mel(mel) | |
return mel | |