djkesu's picture
added model
3bbf2c7
raw
history blame
7.19 kB
import os
from glob import glob
from typing import Dict, List
import librosa
import numpy as np
import torch
import torchaudio
from scipy.io.wavfile import read
from tortoise.utils.stft import STFT
BUILTIN_VOICES_DIR = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "../voices"
)
def load_wav_to_torch(full_path):
sampling_rate, data = read(full_path)
if data.dtype == np.int32:
norm_fix = 2**31
elif data.dtype == np.int16:
norm_fix = 2**15
elif data.dtype == np.float16 or data.dtype == np.float32:
norm_fix = 1.0
else:
raise NotImplementedError(f"Provided data dtype not supported: {data.dtype}")
return (torch.FloatTensor(data.astype(np.float32)) / norm_fix, sampling_rate)
def check_audio(audio, audiopath: str):
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk.
# '2' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds.
if torch.any(audio > 2) or not torch.any(audio < 0):
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}")
audio.clip_(-1, 1)
def read_audio_file(audiopath: str):
if audiopath[-4:] == ".wav":
audio, lsr = load_wav_to_torch(audiopath)
elif audiopath[-4:] == ".mp3":
audio, lsr = librosa.load(audiopath, sr=None)
audio = torch.FloatTensor(audio)
else:
assert False, f"Unsupported audio format provided: {audiopath[-4:]}"
# Remove any channel data.
if len(audio.shape) > 1:
if audio.shape[0] < 5:
audio = audio[0]
else:
assert audio.shape[1] < 5
audio = audio[:, 0]
return audio, lsr
def load_required_audio(audiopath: str):
audio, lsr = read_audio_file(audiopath)
audios = [
torchaudio.functional.resample(audio, lsr, sampling_rate)
for sampling_rate in (22050, 24000)
]
for audio in audios:
check_audio(audio, audiopath)
return [audio.unsqueeze(0) for audio in audios]
def load_audio(audiopath, sampling_rate):
audio, lsr = read_audio_file(audiopath)
if lsr != sampling_rate:
audio = torchaudio.functional.resample(audio, lsr, sampling_rate)
check_audio(audio, audiopath)
return audio.unsqueeze(0)
TACOTRON_MEL_MAX = 2.3143386840820312
TACOTRON_MEL_MIN = -11.512925148010254
def denormalize_tacotron_mel(norm_mel):
return ((norm_mel + 1) / 2) * (
TACOTRON_MEL_MAX - TACOTRON_MEL_MIN
) + TACOTRON_MEL_MIN
def normalize_tacotron_mel(mel):
return 2 * ((mel - TACOTRON_MEL_MIN) / (TACOTRON_MEL_MAX - TACOTRON_MEL_MIN)) - 1
def dynamic_range_compression(x, C=1, clip_val=1e-5):
"""
PARAMS
------
C: compression factor
"""
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression(x, C=1):
"""
PARAMS
------
C: compression factor used to compress
"""
return torch.exp(x) / C
def get_voices(extra_voice_dirs: List[str] = []):
dirs = [BUILTIN_VOICES_DIR] + extra_voice_dirs
voices: Dict[str, List[str]] = {}
for d in dirs:
subs = os.listdir(d)
for sub in subs:
subj = os.path.join(d, sub)
if os.path.isdir(subj):
voices[sub] = (
list(glob(f"{subj}/*.wav"))
+ list(glob(f"{subj}/*.mp3"))
+ list(glob(f"{subj}/*.pth"))
)
return voices
def load_voice(voice: str, extra_voice_dirs: List[str] = []):
if voice == "random":
return None, None
voices = get_voices(extra_voice_dirs)
paths = voices[voice]
if len(paths) == 1 and paths[0].endswith(".pth"):
return None, torch.load(paths[0])
else:
conds = []
for cond_path in paths:
c = load_required_audio(cond_path)
conds.append(c)
return conds, None
def load_voices(voices: List[str], extra_voice_dirs: List[str] = []):
latents = []
clips = []
for voice in voices:
if voice == "random":
if len(voices) > 1:
print(
"Cannot combine a random voice with a non-random voice. Just using a random voice."
)
return None, None
clip, latent = load_voice(voice, extra_voice_dirs)
if latent is None:
assert (
len(latents) == 0
), "Can only combine raw audio voices or latent voices, not both. Do it yourself if you want this."
clips.extend(clip)
elif clip is None:
assert (
len(clips) == 0
), "Can only combine raw audio voices or latent voices, not both. Do it yourself if you want this."
latents.append(latent)
if len(latents) == 0:
return clips, None
else:
latents_0 = torch.stack([l[0] for l in latents], dim=0).mean(dim=0)
latents_1 = torch.stack([l[1] for l in latents], dim=0).mean(dim=0)
latents = (latents_0, latents_1)
return None, latents
class TacotronSTFT(torch.nn.Module):
def __init__(
self,
filter_length=1024,
hop_length=256,
win_length=1024,
n_mel_channels=80,
sampling_rate=22050,
mel_fmin=0.0,
mel_fmax=8000.0,
):
super(TacotronSTFT, self).__init__()
self.n_mel_channels = n_mel_channels
self.sampling_rate = sampling_rate
self.stft_fn = STFT(filter_length, hop_length, win_length)
from librosa.filters import mel as librosa_mel_fn
mel_basis = librosa_mel_fn(
sr=sampling_rate,
n_fft=filter_length,
n_mels=n_mel_channels,
fmin=mel_fmin,
fmax=mel_fmax,
)
mel_basis = torch.from_numpy(mel_basis).float()
self.register_buffer("mel_basis", mel_basis)
def spectral_normalize(self, magnitudes):
output = dynamic_range_compression(magnitudes)
return output
def spectral_de_normalize(self, magnitudes):
output = dynamic_range_decompression(magnitudes)
return output
def mel_spectrogram(self, y):
"""Computes mel-spectrograms from a batch of waves
PARAMS
------
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
RETURNS
-------
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
"""
assert torch.min(y.data) >= -10
assert torch.max(y.data) <= 10
y = torch.clip(y, min=-1, max=1)
magnitudes, phases = self.stft_fn.transform(y)
magnitudes = magnitudes.data
mel_output = torch.matmul(self.mel_basis, magnitudes)
mel_output = self.spectral_normalize(mel_output)
return mel_output
def wav_to_univnet_mel(wav, do_normalization=False, device="cuda"):
stft = TacotronSTFT(1024, 256, 1024, 100, 24000, 0, 12000)
stft = stft.to(device)
mel = stft.mel_spectrogram(wav)
if do_normalization:
mel = normalize_tacotron_mel(mel)
return mel