Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import random | |
num_labels = 3 | |
headers = ["Benign","C1","C2"] | |
default_weights = pd.DataFrame([[0,1,2],[1,0,1],[2,1,0]],columns=headers) | |
example_conf_mats = [ | |
pd.DataFrame([[80,10,0], | |
[20,80,20], | |
[0,10,80]],columns=headers), | |
pd.DataFrame([[80,10,10], | |
[10,80,10], | |
[10,10,80]],columns=headers), | |
pd.DataFrame([[80,10,20], | |
[0,80,0], | |
[20,10,80]],columns=headers), | |
pd.DataFrame([[800,100,100], | |
[100,800,100], | |
[100,100,800]],columns=headers), | |
pd.DataFrame([[800,100,200], | |
[0,800,0], | |
[200,100,800]],columns=headers), | |
] | |
def submit_vals(*argv): | |
argv = list(argv) | |
weights = np.zeros((num_labels, num_labels)) | |
for i in range(num_labels): | |
for j in range(num_labels): | |
if i != j: | |
weights[i][j] = argv.pop(0) | |
weights_df = pd.DataFrame(weights, columns=headers) | |
return weights_df | |
def get_severity(input_df, weights_df): | |
weights_df.columns = input_df.columns | |
total = sum(sum(np.array(input_df))) | |
diag_total = sum(np.diag(input_df)) | |
non_diag_total = total - diag_total | |
if non_diag_total == 0: | |
severity = 0 | |
else: | |
severity = sum(sum(np.array(input_df.multiply(weights_df)))) / non_diag_total | |
return severity | |
def get_acc(input_df, weights_df): | |
input_df = input_df.astype(int) | |
accuracy = 100 * sum(np.diag(input_df)) / sum(sum(np.array(input_df))) | |
return accuracy, get_severity(input_df, weights_df) | |
def flatten(df): | |
return df.to_numpy().flatten() | |
def counts_to_df(sampled_vals, num_labels): | |
mat = np.zeros((num_labels,num_labels), dtype=int) | |
for v in sampled_vals: | |
q, mod = divmod(v, num_labels) | |
mat[q][mod] += 1 | |
return pd.DataFrame(mat) | |
def bootstrap_sample(conf_mat, k): | |
num_labels = len(conf_mat.columns) | |
return counts_to_df(random.choices(population=range(num_labels**2), weights=flatten(conf_mat), k=k), num_labels) | |
def bootstrap_ci(conf_mat, weights_df, iters, k, percentile=95): | |
iters, k = int(iters), int(k) | |
vals = [] | |
for i in range(iters): | |
print() | |
vals.append(get_severity(bootstrap_sample(conf_mat, k), weights_df)) | |
dif = (100 - percentile) / 2 | |
return [np.percentile(vals, dif), np.percentile(vals, 100-dif)] | |
with gr.Blocks() as demo: | |
with gr.Tab("Error severity matrix"): | |
with gr.Row(): | |
with gr.Column(): | |
sliders = [] | |
for i in range(num_labels): | |
for j in range(num_labels): | |
if i != j: | |
sliders.append(gr.Slider(1, 5, value=np.abs(i-j), step=1, label="Impact of misclassifying "+ headers[j] + " as " + headers[i])) | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
output_err_mat = gr.Dataframe(value = default_weights, datatype = "number", row_count = (num_labels, "fixed"), col_count=(num_labels,"fixed"), label="Error Severity Matrix", interactive=0, headers=headers) | |
submit_btn.click(submit_vals, inputs=sliders, outputs=output_err_mat) | |
with gr.Tab("Calculate accuracy and Error Severity"): | |
with gr.Row(): | |
with gr.Column(): | |
conf_df = gr.Dataframe(datatype = "number", row_count = (num_labels, "fixed"), col_count=(num_labels,"fixed"), label="Confusion Matrix", interactive=1, headers=headers) | |
submit_btn = gr.Button("Submit") | |
examples = gr.Examples(examples=example_conf_mats, inputs=[conf_df]) | |
with gr.Column(): | |
outputs = [gr.Textbox(label="Accuracy"), gr.Textbox(label="Error Severity")] | |
submit_btn.click(fn=get_acc, inputs=[conf_df,output_err_mat], outputs=outputs) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("Use bootstrapping to compute the 95% confidence interval for the Error Severity Index above. As a rule of thumb, sample size can be set to the sum of values in the confusion matrix.") | |
ci_inputs = [gr.Textbox(label="Iterations", value=100), gr.Textbox(label="Sample size", value=300)] | |
submit_btn2 = gr.Button("Submit") | |
with gr.Column(): | |
output_ci = gr.Textbox(label="95% Confidence Interval") | |
submit_btn2.click(fn=bootstrap_ci, inputs=[conf_df,output_err_mat, ci_inputs[0], ci_inputs[1]], outputs = output_ci) | |
demo.launch() |