Tirath5504's picture
Update app.py
90c3f92 verified
raw
history blame
2.31 kB
import easyocr
from gradio_client import Client, handle_file
import pandas as pd
import gradio as gr
clientImg = Client("dj-dawgs-ipd/IPD-Image-ViT-Finetune")
clientEngText = Client("dj-dawgs-ipd/IPD-Text-English-Finetune")
clientHingText = Client("dj-dawgs-ipd/IPD-Text-Hinglish")
profanity_df = pd.read_csv('Hinglish_Profanity_List.csv' , encoding = 'utf-8')
profanity_hn = profanity_df['profanity_hn']
def extract_text(image):
reader = easyocr.Reader(['en'])
data = [result[1] for result in reader.readtext(image)]
return ' '.join([l for l in data])
def predict(image):
imgResult = clientImg.predict(
image=handle_file(image),
api_name="/predict"
)
label , confidence = imgResult[0]['label'] , float(imgResult[1]['label'])
if confidence > 0.95:
return ["hate" , f"label: {label}, confidence: {confidence}"]
else:
ocr_text = extract_text(image).lower()
engResult = clientEngText.predict(
text=ocr_text,
api_name="/predict"
)
hingResult = clientHingText.predict(
text=ocr_text,
api_name="/predict"
)
profanityFound = any(word in ocr_text.split() for word in profanity_hn)
if profanityFound:
return ["hate", "Profanity Found"]
elif engResult[0] != "NEITHER" or engResult[1] < 0.5:
return ["hate", f"Result: {engResult}, Text: {ocr_text}"]
elif hingResult[0] != "NAG" or hingResult[1] < 0.5:
return ["hate", f"Result: {hingResult}, Text: {ocr_text}"]
else:
return ["not_hate", "No hate found, yay!"]
# if not profanityFound and engResult[0] == "NEITHER" and hingResult[0] == "NAG":
# return ["not_hate" , "No Hate Symbols Detected"]
# else:
# return ["hate" , "No Hate Symbols Detected"]
iface = gr.Interface(fn=predict,
inputs = gr.Image(type='filepath'),
outputs=[gr.Label(label = "Class (hate or not_hate)") , gr.Label(label = "Explanation")],
title = "Hate Speech Detection in Image",
description = "Detect hateful symbols or text in Image"
)
if __name__ == "__main__":
iface.launch()