divyeshrajpura commited on
Commit
fe7fc8b
1 Parent(s): 4c2c4b9

Unit 7 - Final working copy

Browse files
Files changed (1) hide show
  1. app.py +7 -9
app.py CHANGED
@@ -2,27 +2,25 @@ import gradio as gr
2
  import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
-
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
-
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
-
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
 
26
  return outputs["text"]
27
 
28
 
@@ -31,7 +29,6 @@ def synthesise(text):
31
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
  return speech.cpu()
33
 
34
-
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
37
  synthesised_speech = synthesise(translated_text)
@@ -70,3 +67,4 @@ with demo:
70
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
 
72
  demo.launch()
 
 
2
  import numpy as np
3
  import torch
4
  from datasets import load_dataset
 
5
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
6
 
 
7
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
8
 
9
  # load speech translation checkpoint
10
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
11
 
12
  # load text-to-speech checkpoint and speaker embeddings
13
+ processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
14
 
15
+ model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
16
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
17
 
18
+ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation", streaming = True)
19
+ speaker_embeddings = torch.tensor(next(iter(embeddings_dataset))["xvector"]).unsqueeze(0)
 
20
 
21
  def translate(audio):
22
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
23
+ print(outputs["text"])
24
  return outputs["text"]
25
 
26
 
 
29
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
30
  return speech.cpu()
31
 
 
32
  def speech_to_speech_translation(audio):
33
  translated_text = translate(audio)
34
  synthesised_speech = synthesise(translated_text)
 
67
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
68
 
69
  demo.launch()
70
+