Upload Ingest (2).py
Browse files- Ingest (2).py +18 -0
Ingest (2).py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.document_loaders import PyPDFLoader,DirectoryLoader
|
2 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_community.vectorstores import FAISS
|
5 |
+
|
6 |
+
loader = DirectoryLoader('data', glob="./*.pdf", loader_cls=PyPDFLoader)
|
7 |
+
documents = loader.load()
|
8 |
+
|
9 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
|
10 |
+
texts = text_splitter.split_documents(documents)
|
11 |
+
|
12 |
+
embedings = HuggingFaceEmbeddings(model_name="nomic-ai/nomic-embed-text-v1",model_kwargs={"trust_remote_code":True,"revision":"289f532e14dbbbd5a04753fa58739e9ba766f3c7"})
|
13 |
+
|
14 |
+
# Creates vector embeddings and saves it in the FAISS DB
|
15 |
+
faiss_db = FAISS.from_documents(texts, embedings)
|
16 |
+
|
17 |
+
# Saves and export the vector embeddings databse
|
18 |
+
faiss_db.save_local("ipc_vector_db")
|