Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import gradio as gr | |
| from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
| # Load pre-trained model and tokenizer | |
| model_name = "gpt2" | |
| tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
| model = GPT2LMHeadModel.from_pretrained(model_name) | |
| def generate_response(prompt): | |
| score1 = 0 | |
| score2=0 | |
| # Tokenize the prompt | |
| input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
| # Generate response using beam search | |
| output = model.generate(input_ids, max_length=100, | |
| num_return_sequences=2, no_repeat_ngram_size=2, num_beams=5) | |
| # Decode and store responses with basic scoring | |
| responses = [] | |
| for i, out in enumerate(output): | |
| response = tokenizer.decode(out, skip_special_tokens=True) | |
| responses.append(response) | |
| return responses[0], score1, responses[1], score2 | |
| # Gradio interface | |
| iface = gr.Interface( | |
| fn=generate_response, | |
| inputs=["text"], | |
| outputs=[gr.Textbox(label="Response 1"), | |
| gr.Slider(0,5,interactive=True,label="score 1",step=1), | |
| gr.Textbox(label="Response 2"), | |
| gr.Slider(0,5,interactive=True,label="score 2",step=1)], | |
| title="GROUP1_TASK1", | |
| description="Enter a question to generate responses from GPT-2 model.", | |
| ) | |
| iface.launch() |