Spaces:
Runtime error
Runtime error
import os, sys | |
from os.path import dirname as up | |
sys.path.append(os.path.abspath(os.path.join(up(__file__), os.pardir))) | |
from langchain.document_loaders import CSVLoader | |
from langchain.indexes import VectorstoreIndexCreator | |
from langchain.chains import RetrievalQA | |
from langchain.llms import OpenAI | |
import os | |
import gradio as gr | |
import pandas as pd | |
from utils.constants import * | |
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY | |
# Load the documents | |
loader = CSVLoader(file_path=CSV_FILE_PATH) | |
# Create an index using the loaded documents | |
index_creator = VectorstoreIndexCreator() | |
docsearch = index_creator.from_loaders([loader]) | |
# Create a question-answering chain using the index | |
chain = RetrievalQA.from_chain_type( | |
llm=OpenAI(), | |
chain_type="stuff", | |
retriever=docsearch.vectorstore.as_retriever(), | |
input_key="question", | |
) | |
def return_response_chain(query: str): | |
response = chain({"question": query}) | |
return response['result'] | |
def clear_fields(query: str, output: str): | |
query = "" | |
output = "" | |
# if __name__ == "__main__": | |
# # Pass a query to the chain | |
# query = "How does UAE compare with USA in terms of gdp?" | |
# response = chain({"question": query}) | |
# print(response['result']) | |