disham993's picture
Application file added.
33fbb25
raw
history blame
1.24 kB
import os, sys
from os.path import dirname as up
sys.path.append(os.path.abspath(os.path.join(up(__file__), os.pardir)))
from langchain.document_loaders import CSVLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
import os
import gradio as gr
import pandas as pd
from utils.constants import *
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
# Load the documents
loader = CSVLoader(file_path=CSV_FILE_PATH)
# Create an index using the loaded documents
index_creator = VectorstoreIndexCreator()
docsearch = index_creator.from_loaders([loader])
# Create a question-answering chain using the index
chain = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=docsearch.vectorstore.as_retriever(),
input_key="question",
)
def return_response_chain(query: str):
response = chain({"question": query})
return response['result']
def clear_fields(query: str, output: str):
query = ""
output = ""
# if __name__ == "__main__":
# # Pass a query to the chain
# query = "How does UAE compare with USA in terms of gdp?"
# response = chain({"question": query})
# print(response['result'])