|  | import json | 
					
						
						|  | import os | 
					
						
						|  |  | 
					
						
						|  | import pandas as pd | 
					
						
						|  |  | 
					
						
						|  | from src.display.formatting import has_no_nan_values, make_clickable_model | 
					
						
						|  | from src.display.utils import AutoEvalColumn, EvalQueueColumn | 
					
						
						|  | from src.leaderboard.read_evals import get_raw_eval_results | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: | 
					
						
						|  | raw_data = get_raw_eval_results(results_path, requests_path) | 
					
						
						|  | all_data_json = [v.to_dict() for v in raw_data] | 
					
						
						|  |  | 
					
						
						|  | df = pd.DataFrame.from_records(all_data_json) | 
					
						
						|  | df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) | 
					
						
						|  | df = df[cols].round(decimals=2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | df = df[has_no_nan_values(df, benchmark_cols)] | 
					
						
						|  | return raw_data, df | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: | 
					
						
						|  | entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | 
					
						
						|  | all_evals = [] | 
					
						
						|  |  | 
					
						
						|  | for entry in entries: | 
					
						
						|  | if ".json" in entry: | 
					
						
						|  | file_path = os.path.join(save_path, entry) | 
					
						
						|  | with open(file_path) as fp: | 
					
						
						|  | data = json.load(fp) | 
					
						
						|  |  | 
					
						
						|  | data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | 
					
						
						|  | data[EvalQueueColumn.revision.name] = data.get("revision", "main") | 
					
						
						|  |  | 
					
						
						|  | all_evals.append(data) | 
					
						
						|  | elif ".md" not in entry: | 
					
						
						|  |  | 
					
						
						|  | sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] | 
					
						
						|  | for sub_entry in sub_entries: | 
					
						
						|  | file_path = os.path.join(save_path, entry, sub_entry) | 
					
						
						|  | with open(file_path) as fp: | 
					
						
						|  | data = json.load(fp) | 
					
						
						|  |  | 
					
						
						|  | data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | 
					
						
						|  | data[EvalQueueColumn.revision.name] = data.get("revision", "main") | 
					
						
						|  | all_evals.append(data) | 
					
						
						|  |  | 
					
						
						|  | pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | 
					
						
						|  | running_list = [e for e in all_evals if e["status"] == "RUNNING"] | 
					
						
						|  | finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | 
					
						
						|  | df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | 
					
						
						|  | df_running = pd.DataFrame.from_records(running_list, columns=cols) | 
					
						
						|  | df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | 
					
						
						|  | return df_finished[cols], df_running[cols], df_pending[cols] | 
					
						
						|  |  |