Update src/populate.py
Browse files- src/populate.py +8 -0
src/populate.py
CHANGED
@@ -15,6 +15,14 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
15 |
df = pd.DataFrame.from_records(all_data_json)
|
16 |
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
17 |
df = df.sort_values(by=[AutoEvalColumn.task5.name], ascending=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
df = df[cols].round(decimals=2)
|
19 |
|
20 |
# filter out if any of the benchmarks have not been produced
|
|
|
15 |
df = pd.DataFrame.from_records(all_data_json)
|
16 |
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
17 |
df = df.sort_values(by=[AutoEvalColumn.task5.name], ascending=True)
|
18 |
+
|
19 |
+
mos_rank = df[AutoEvalColumn.task2.name].rank(method="max", numeric_only=True, ascending=True)
|
20 |
+
bitrate_rank = df[AutoEvalColumn.task3.name].rank(method="min", numeric_only=True, ascending=True)
|
21 |
+
df["Ranking"] = pd.Series((mos_rank + bitrate_rank)/2)
|
22 |
+
df = df.sort_values(by=["Ranking", AutoEvalColumn.task2.name], ascending=True)
|
23 |
+
df["Rank"] = df.groupby("Precision").cumcount() + 1
|
24 |
+
df.pop("Ranking")
|
25 |
+
|
26 |
df = df[cols].round(decimals=2)
|
27 |
|
28 |
# filter out if any of the benchmarks have not been produced
|