|
import json |
|
import os |
|
|
|
import pandas as pd |
|
|
|
from src.display.formatting import has_no_nan_values, make_clickable_model |
|
from src.display.utils import AutoEvalColumn, EvalQueueColumn |
|
from src.leaderboard.read_evals import get_raw_eval_results |
|
|
|
|
|
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: |
|
raw_data = get_raw_eval_results(results_path, requests_path) |
|
all_data_json = [v.to_dict() for v in raw_data] |
|
|
|
df = pd.DataFrame.from_records(all_data_json) |
|
|
|
|
|
|
|
|
|
df[AutoEvalColumn.task0.name] = pd.Series( |
|
np.stack( |
|
np.array(df[AutoEvalColumn.task0.name].values) |
|
).squeeze() |
|
) |
|
df[AutoEvalColumn.task1.name] = pd.Series( |
|
np.stack( |
|
np.array(df[AutoEvalColumn.task1.name].values) |
|
).squeeze() |
|
) |
|
df[AutoEvalColumn.task2.name] = pd.Series( |
|
np.stack( |
|
np.array(df[AutoEvalColumn.task2.name].values) |
|
).squeeze() |
|
) |
|
|
|
en_cer_rank = df[AutoEvalColumn.task0.name].rank(method="min", numeric_only=True, ascending=True) |
|
ml_cer_rank = df[AutoEvalColumn.task1.name].rank(method="min", numeric_only=True, ascending=True) |
|
bitrate_rank = df[AutoEvalColumn.task2.name].rank(method="min", numeric_only=True, ascending=True) |
|
df["Ranking"] = pd.Series((en_cer_rank + ml_cer_rank + bitrate_rank)/3) |
|
df = df.sort_values(by=["Ranking", AutoEvalColumn.task1.name], ascending=True) |
|
df["Rank"] = df.groupby("Precision").cumcount() + 1 |
|
df.pop("Ranking") |
|
|
|
df = df[cols].round(decimals=2) |
|
|
|
|
|
df = df[has_no_nan_values(df, benchmark_cols)] |
|
return raw_data, df |
|
|
|
|
|
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: |
|
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] |
|
all_evals = [] |
|
|
|
for entry in entries: |
|
if ".json" in entry: |
|
file_path = os.path.join(save_path, entry) |
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
|
|
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) |
|
data[EvalQueueColumn.revision.name] = data.get("revision", "main") |
|
|
|
all_evals.append(data) |
|
elif ".md" not in entry: |
|
|
|
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] |
|
for sub_entry in sub_entries: |
|
file_path = os.path.join(save_path, entry, sub_entry) |
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
|
|
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) |
|
data[EvalQueueColumn.revision.name] = data.get("revision", "main") |
|
all_evals.append(data) |
|
|
|
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] |
|
running_list = [e for e in all_evals if e["status"] == "RUNNING"] |
|
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] |
|
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) |
|
df_running = pd.DataFrame.from_records(running_list, columns=cols) |
|
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) |
|
return df_finished[cols], df_running[cols], df_pending[cols] |
|
|