Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,128 @@
|
|
1 |
-
|
2 |
import streamlit as st
|
|
|
|
|
3 |
import os
|
4 |
-
from langchain_groq import ChatGroq
|
5 |
-
from langchain_community.document_loaders import WebBaseLoader
|
6 |
-
from langchain_community.embeddings import OllamaEmbeddings
|
7 |
-
from langchain.embeddings import OllamaEmbeddings
|
8 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
-
from langchain.chains.combine_documents import create_stuff_documents_chain
|
10 |
-
from langchain_core.prompts import ChatPromptTemplate
|
11 |
-
from langchain.chains import create_retrieval_chain
|
12 |
-
from langchain_community.vectorstores import FAISS
|
13 |
import time
|
|
|
|
|
|
|
14 |
|
15 |
from dotenv import load_dotenv
|
|
|
16 |
load_dotenv()
|
17 |
|
18 |
## load the Groq API key
|
19 |
groq_api_key=os.environ['GROQ_API_KEY']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
st.title("ChatGroq Demo")
|
31 |
-
llm=ChatGroq(groq_api_key=groq_api_key,
|
32 |
-
model_name="mixtral-8x7b-32768")
|
33 |
-
|
34 |
-
prompt=ChatPromptTemplate.from_template(
|
35 |
-
"""
|
36 |
-
Answer the questions based on the provided context only.
|
37 |
-
Please provide the most accurate response based on the question
|
38 |
-
<context>
|
39 |
-
{context}
|
40 |
-
<context>
|
41 |
-
Questions:{input}
|
42 |
-
|
43 |
-
"""
|
44 |
-
)
|
45 |
-
document_chain = create_stuff_documents_chain(llm, prompt)
|
46 |
-
retriever = st.session_state.vectors.as_retriever()
|
47 |
-
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
48 |
-
|
49 |
-
prompt=st.text_input("Input you prompt here")
|
50 |
-
|
51 |
-
if prompt:
|
52 |
-
start=time.process_time()
|
53 |
-
response=retrieval_chain.invoke({"input":prompt})
|
54 |
-
print("Response time :",time.process_time()-start)
|
55 |
-
st.write(response['answer'])
|
56 |
-
|
57 |
-
# With a streamlit expander
|
58 |
-
with st.expander("Document Similarity Search"):
|
59 |
-
# Find the relevant chunks
|
60 |
-
for i, doc in enumerate(response["context"]):
|
61 |
-
st.write(doc.page_content)
|
62 |
-
st.write("--------------------------------")
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from typing import Generator
|
3 |
+
from groq import Groq
|
4 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import time
|
6 |
+
from langchain_groq import ChatGroq
|
7 |
+
st.set_page_config(page_icon="π¬", layout="wide",
|
8 |
+
page_title="Groq Goes Brrrrrrrr...")
|
9 |
|
10 |
from dotenv import load_dotenv
|
11 |
+
|
12 |
load_dotenv()
|
13 |
|
14 |
## load the Groq API key
|
15 |
groq_api_key=os.environ['GROQ_API_KEY']
|
16 |
+
def icon(emoji: str):
|
17 |
+
"""Shows an emoji as a Notion-style page icon."""
|
18 |
+
st.write(
|
19 |
+
f'<span style="font-size: 78px; line-height: 1">{emoji}</span>',
|
20 |
+
unsafe_allow_html=True,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
icon("ποΈ")
|
25 |
+
|
26 |
+
st.subheader("Groq Chat Streamlit App", divider="rainbow", anchor=False)
|
27 |
+
|
28 |
+
client = Groq(api_key=groq_api_key)
|
29 |
+
|
30 |
+
|
31 |
+
# Initialize chat history and selected model
|
32 |
+
if "messages" not in st.session_state:
|
33 |
+
st.session_state.messages = []
|
34 |
+
|
35 |
+
if "selected_model" not in st.session_state:
|
36 |
+
st.session_state.selected_model = None
|
37 |
+
|
38 |
+
# Define model details
|
39 |
+
models = {
|
40 |
+
"gemma-7b-it": {"name": "Gemma-7b-it", "tokens": 8192, "developer": "Google"},
|
41 |
+
"llama2-70b-4096": {"name": "LLaMA2-70b-chat", "tokens": 4096, "developer": "Meta"},
|
42 |
+
"llama3-70b-8192": {"name": "LLaMA3-70b-8192", "tokens": 8192, "developer": "Meta"},
|
43 |
+
"llama3-8b-8192": {"name": "LLaMA3-8b-8192", "tokens": 8192, "developer": "Meta"},
|
44 |
+
"mixtral-8x7b-32768": {"name": "Mixtral-8x7b-Instruct-v0.1", "tokens": 32768, "developer": "Mistral"},
|
45 |
+
}
|
46 |
+
|
47 |
+
# Layout for model selection and max_tokens slider
|
48 |
+
col1, col2 = st.columns(2)
|
49 |
+
|
50 |
+
with col1:
|
51 |
+
model_option = st.selectbox(
|
52 |
+
"Choose a model:",
|
53 |
+
options=list(models.keys()),
|
54 |
+
format_func=lambda x: models[x]["name"],
|
55 |
+
index=4 # Default to mixtral
|
56 |
+
)
|
57 |
+
|
58 |
+
# Detect model change and clear chat history if model has changed
|
59 |
+
if st.session_state.selected_model != model_option:
|
60 |
+
st.session_state.messages = []
|
61 |
+
st.session_state.selected_model = model_option
|
62 |
+
|
63 |
+
max_tokens_range = models[model_option]["tokens"]
|
64 |
+
|
65 |
+
with col2:
|
66 |
+
# Adjust max_tokens slider dynamically based on the selected model
|
67 |
+
max_tokens = st.slider(
|
68 |
+
"Max Tokens:",
|
69 |
+
min_value=512, # Minimum value to allow some flexibility
|
70 |
+
max_value=max_tokens_range,
|
71 |
+
# Default value or max allowed if less
|
72 |
+
value=min(32768, max_tokens_range),
|
73 |
+
step=512,
|
74 |
+
help=f"Adjust the maximum number of tokens (words) for the model's response. Max for selected model: {max_tokens_range}"
|
75 |
+
)
|
76 |
+
|
77 |
+
# Display chat messages from history on app rerun
|
78 |
+
for message in st.session_state.messages:
|
79 |
+
avatar = 'π€' if message["role"] == "assistant" else 'π¨βπ»'
|
80 |
+
with st.chat_message(message["role"], avatar=avatar):
|
81 |
+
st.markdown(message["content"])
|
82 |
+
|
83 |
+
|
84 |
+
def generate_chat_responses(chat_completion) -> Generator[str, None, None]:
|
85 |
+
"""Yield chat response content from the Groq API response."""
|
86 |
+
for chunk in chat_completion:
|
87 |
+
if chunk.choices[0].delta.content:
|
88 |
+
yield chunk.choices[0].delta.content
|
89 |
+
|
90 |
+
|
91 |
+
if prompt := st.chat_input("Enter your prompt here..."):
|
92 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
93 |
+
|
94 |
+
with st.chat_message("user", avatar='π¨βπ»'):
|
95 |
+
st.markdown(prompt)
|
96 |
+
# Fetch response from Groq API
|
97 |
+
try:
|
98 |
+
chat_completion = client.chat.completions.create(
|
99 |
+
model=model_option,
|
100 |
+
messages=[
|
101 |
+
{
|
102 |
+
"role": m["role"],
|
103 |
+
"content": m["content"]
|
104 |
+
}
|
105 |
+
for m in st.session_state.messages
|
106 |
+
],
|
107 |
+
max_tokens=max_tokens,
|
108 |
+
stream=False
|
109 |
+
)
|
110 |
+
full_response = chat_completion.choices[0].message.content
|
111 |
+
|
112 |
+
# Use the generator function with st.write_stream
|
113 |
+
with st.chat_message("assistant", avatar="π€"):
|
114 |
+
st.write(full_response)
|
115 |
+
for chunk in chat_completion:
|
116 |
+
if chunk.choices[0].message.content:
|
117 |
+
st.text(chunk.choices[0].message.content)
|
118 |
+
|
119 |
|
120 |
+
# Update message content dynamically using a loop with sleep
|
121 |
+
for i in range(1, len(full_response) // 100 + 1):
|
122 |
+
st.write(full_response[i * 100 : (i + 1) * 100])
|
123 |
+
time.sleep(0.1)
|
124 |
+
|
125 |
+
except Exception as e:
|
126 |
+
st.error(e, icon="π¨")
|
127 |
+
# Set full_response to a default value or handle the error accordingly
|
128 |
+
full_response = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|