dipannitaray's picture
Upload 5 files
09c0b7e verified
raw
history blame
10.1 kB
import re
from bs4 import BeautifulSoup
import distance
from fuzzywuzzy import fuzz
import pickle
import numpy as np
from nltk.corpus import stopwords
cv = pickle.load(open('cv.pkl','rb'))
def preprocess(q):
q = str(q).lower().strip()
# Replace certain special characters with their string equivalents
q = q.replace('%', ' percent')
q = q.replace('$', ' dollar ')
q = q.replace('₹', ' rupee ')
q = q.replace('€', ' euro ')
q = q.replace('@', ' at ')
# The pattern '[math]' appears around 900 times in the whole dataset.
q = q.replace('[math]', '')
# Replacing some numbers with string equivalents (not perfect, can be done better to account for more cases)
q = q.replace(',000,000,000 ', 'b ')
q = q.replace(',000,000 ', 'm ')
q = q.replace(',000 ', 'k ')
q = re.sub(r'([0-9]+)000000000', r'\1b', q)
q = re.sub(r'([0-9]+)000000', r'\1m', q)
q = re.sub(r'([0-9]+)000', r'\1k', q)
# Decontracting words
# https://en.wikipedia.org/wiki/Wikipedia%3aList_of_English_contractions
# https://stackoverflow.com/a/19794953
contractions = {
"ain't": "am not",
"aren't": "are not",
"can't": "can not",
"can't've": "can not have",
"'cause": "because",
"could've": "could have",
"couldn't": "could not",
"couldn't've": "could not have",
"didn't": "did not",
"doesn't": "does not",
"don't": "do not",
"hadn't": "had not",
"hadn't've": "had not have",
"hasn't": "has not",
"haven't": "have not",
"he'd": "he would",
"he'd've": "he would have",
"he'll": "he will",
"he'll've": "he will have",
"he's": "he is",
"how'd": "how did",
"how'd'y": "how do you",
"how'll": "how will",
"how's": "how is",
"i'd": "i would",
"i'd've": "i would have",
"i'll": "i will",
"i'll've": "i will have",
"i'm": "i am",
"i've": "i have",
"isn't": "is not",
"it'd": "it would",
"it'd've": "it would have",
"it'll": "it will",
"it'll've": "it will have",
"it's": "it is",
"let's": "let us",
"ma'am": "madam",
"mayn't": "may not",
"might've": "might have",
"mightn't": "might not",
"mightn't've": "might not have",
"must've": "must have",
"mustn't": "must not",
"mustn't've": "must not have",
"needn't": "need not",
"needn't've": "need not have",
"o'clock": "of the clock",
"oughtn't": "ought not",
"oughtn't've": "ought not have",
"shan't": "shall not",
"sha'n't": "shall not",
"shan't've": "shall not have",
"she'd": "she would",
"she'd've": "she would have",
"she'll": "she will",
"she'll've": "she will have",
"she's": "she is",
"should've": "should have",
"shouldn't": "should not",
"shouldn't've": "should not have",
"so've": "so have",
"so's": "so as",
"that'd": "that would",
"that'd've": "that would have",
"that's": "that is",
"there'd": "there would",
"there'd've": "there would have",
"there's": "there is",
"they'd": "they would",
"they'd've": "they would have",
"they'll": "they will",
"they'll've": "they will have",
"they're": "they are",
"they've": "they have",
"to've": "to have",
"wasn't": "was not",
"we'd": "we would",
"we'd've": "we would have",
"we'll": "we will",
"we'll've": "we will have",
"we're": "we are",
"we've": "we have",
"weren't": "were not",
"what'll": "what will",
"what'll've": "what will have",
"what're": "what are",
"what's": "what is",
"what've": "what have",
"when's": "when is",
"when've": "when have",
"where'd": "where did",
"where's": "where is",
"where've": "where have",
"who'll": "who will",
"who'll've": "who will have",
"who's": "who is",
"who've": "who have",
"why's": "why is",
"why've": "why have",
"will've": "will have",
"won't": "will not",
"won't've": "will not have",
"would've": "would have",
"wouldn't": "would not",
"wouldn't've": "would not have",
"y'all": "you all",
"y'all'd": "you all would",
"y'all'd've": "you all would have",
"y'all're": "you all are",
"y'all've": "you all have",
"you'd": "you would",
"you'd've": "you would have",
"you'll": "you will",
"you'll've": "you will have",
"you're": "you are",
"you've": "you have"
}
q_decontracted = []
for word in q.split():
if word in contractions:
word = contractions[word]
q_decontracted.append(word)
q = ' '.join(q_decontracted)
q = q.replace("'ve", " have")
q = q.replace("n't", " not")
q = q.replace("'re", " are")
q = q.replace("'ll", " will")
# Removing HTML tags
q = BeautifulSoup(q)
q = q.get_text()
# Remove punctuations
pattern = re.compile('\W')
q = re.sub(pattern, ' ', q).strip()
return q
def common_words(row):
w1 = set(map(lambda word: word.lower().strip(), row['question1'].split(" ")))
w2 = set(map(lambda word: word.lower().strip(), row['question2'].split(" ")))
return len(w1 & w2)
def common_words(row):
w1 = set(map(lambda word: word.lower().strip(), row['question1'].split(" ")))
w2 = set(map(lambda word: word.lower().strip(), row['question2'].split(" ")))
return len(w1 & w2)
def test_common_words(q1,q2):
w1 = set(map(lambda word: word.lower().strip(), q1.split(" ")))
w2 = set(map(lambda word: word.lower().strip(), q2.split(" ")))
return len(w1 & w2)
def test_total_words(q1,q2):
w1 = set(map(lambda word: word.lower().strip(), q1.split(" ")))
w2 = set(map(lambda word: word.lower().strip(), q2.split(" ")))
return (len(w1) + len(w2))
def test_fetch_token_features(q1, q2):
SAFE_DIV = 0.0001
stop_words = stopwords.words("english")
token_features = [0.0] * 8
# Converting the Sentence into Tokens:
q1_tokens = q1.split()
q2_tokens = q2.split()
if len(q1_tokens) == 0 or len(q2_tokens) == 0:
return token_features
# Get the non-stopwords in Questions
q1_words = set([word for word in q1_tokens if word not in stop_words])
q2_words = set([word for word in q2_tokens if word not in stop_words])
# Get the stopwords in Questions
q1_stops = set([word for word in q1_tokens if word in stop_words])
q2_stops = set([word for word in q2_tokens if word in stop_words])
# Get the common non-stopwords from Question pair
common_word_count = len(q1_words.intersection(q2_words))
# Get the common stopwords from Question pair
common_stop_count = len(q1_stops.intersection(q2_stops))
# Get the common Tokens from Question pair
common_token_count = len(set(q1_tokens).intersection(set(q2_tokens)))
token_features[0] = common_word_count / (min(len(q1_words), len(q2_words)) + SAFE_DIV)
token_features[1] = common_word_count / (max(len(q1_words), len(q2_words)) + SAFE_DIV)
token_features[2] = common_stop_count / (min(len(q1_stops), len(q2_stops)) + SAFE_DIV)
token_features[3] = common_stop_count / (max(len(q1_stops), len(q2_stops)) + SAFE_DIV)
token_features[4] = common_token_count / (min(len(q1_tokens), len(q2_tokens)) + SAFE_DIV)
token_features[5] = common_token_count / (max(len(q1_tokens), len(q2_tokens)) + SAFE_DIV)
# Last word of both question is same or not
token_features[6] = int(q1_tokens[-1] == q2_tokens[-1])
# First word of both question is same or not
token_features[7] = int(q1_tokens[0] == q2_tokens[0])
return token_features
def test_fetch_length_features(q1, q2):
length_features = [0.0] * 3
# Converting the Sentence into Tokens:
q1_tokens = q1.split()
q2_tokens = q2.split()
if len(q1_tokens) == 0 or len(q2_tokens) == 0:
return length_features
# Absolute length features
length_features[0] = abs(len(q1_tokens) - len(q2_tokens))
# Average Token Length of both Questions
length_features[1] = (len(q1_tokens) + len(q2_tokens)) / 2
strs = list(distance.lcsubstrings(q1, q2))
length_features[2] = len(strs[0]) / (min(len(q1), len(q2)) + 1)
return length_features
def test_fetch_fuzzy_features(q1, q2):
fuzzy_features = [0.0] * 4
# fuzz_ratio
fuzzy_features[0] = fuzz.QRatio(q1, q2)
# fuzz_partial_ratio
fuzzy_features[1] = fuzz.partial_ratio(q1, q2)
# token_sort_ratio
fuzzy_features[2] = fuzz.token_sort_ratio(q1, q2)
# token_set_ratio
fuzzy_features[3] = fuzz.token_set_ratio(q1, q2)
return fuzzy_features
def query_point_creator(q1, q2):
input_query = []
# preprocess
q1 = preprocess(q1)
q2 = preprocess(q2)
# fetch basic features
input_query.append(len(q1))
input_query.append(len(q2))
input_query.append(len(q1.split(" ")))
input_query.append(len(q2.split(" ")))
input_query.append(test_common_words(q1, q2))
input_query.append(test_total_words(q1, q2))
input_query.append(round(test_common_words(q1, q2) / test_total_words(q1, q2), 2))
# fetch token features
token_features = test_fetch_token_features(q1, q2)
input_query.extend(token_features)
# fetch length based features
length_features = test_fetch_length_features(q1, q2)
input_query.extend(length_features)
# fetch fuzzy features
fuzzy_features = test_fetch_fuzzy_features(q1, q2)
input_query.extend(fuzzy_features)
# bow feature for q1
q1_bow = cv.transform([q1]).toarray()
print(q1_bow)
# bow feature for q2
q2_bow = cv.transform([q2]).toarray()
return np.hstack((np.array(input_query).reshape(1, 22), q1_bow, q2_bow))