Spaces:
Build error
Build error
dipannitaray
commited on
Commit
•
ada12e7
1
Parent(s):
3e7ec50
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
5 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM
|
8 |
+
import torch
|
9 |
+
import pickle
|
10 |
+
import joblib
|
11 |
+
|
12 |
+
# Load models and tokenizers
|
13 |
+
model = load_model('rnn_lstm_final.h5')
|
14 |
+
loaded_model = joblib.load("my_rnn_model.joblib")
|
15 |
+
|
16 |
+
with open("tokenizer_and_sequences.pkl", "rb") as f:
|
17 |
+
tokenizer, data = pickle.load(f)
|
18 |
+
|
19 |
+
model1 = AutoModelForSequenceClassification.from_pretrained('punjabiSentimentAnalysis')
|
20 |
+
tokenizer1 = AutoTokenizer.from_pretrained('punjabiSentimentAnalysis')
|
21 |
+
|
22 |
+
model_summ = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicSentenceSummarizationSS")
|
23 |
+
tokenizer_summ = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicSentenceSummarizationSS",
|
24 |
+
do_lower_case=False, use_fast=False, keep_accents=True)
|
25 |
+
bos_id = tokenizer_summ._convert_token_to_id_with_added_voc("<s>")
|
26 |
+
eos_id = tokenizer_summ._convert_token_to_id_with_added_voc("</s>")
|
27 |
+
pad_id = tokenizer_summ._convert_token_to_id_with_added_voc("<pad>")
|
28 |
+
|
29 |
+
# Define helper functions
|
30 |
+
def is_valid_punjabi_text(text):
|
31 |
+
english_alphabet = set("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ")
|
32 |
+
numbers = set("0123456789")
|
33 |
+
punctuation = set("!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~")
|
34 |
+
|
35 |
+
for char in text:
|
36 |
+
if char in english_alphabet or char in numbers or char in punctuation:
|
37 |
+
return False
|
38 |
+
return True
|
39 |
+
|
40 |
+
def predict_sentiment(text, model, tokenizer):
|
41 |
+
inputs = tokenizer(text, return_tensors="pt")
|
42 |
+
outputs = model(**inputs)
|
43 |
+
predicted_class = torch.argmax(outputs.logits, dim=-1).item()
|
44 |
+
return "Negative" if predicted_class == 0 else "Positive"
|
45 |
+
|
46 |
+
def summarize(text):
|
47 |
+
input_ids = tokenizer_summ(f"{text} </s> <2pa>", add_special_tokens=False, return_tensors="pt",
|
48 |
+
padding=True).input_ids
|
49 |
+
model_output = model_summ.generate(input_ids, use_cache=True, no_repeat_ngram_size=3, num_beams=5,
|
50 |
+
length_penalty=0.8, max_length=20, min_length=1, early_stopping=True,
|
51 |
+
pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id,
|
52 |
+
decoder_start_token_id=tokenizer_summ._convert_token_to_id_with_added_voc("<2pa>"))
|
53 |
+
decoded_output = tokenizer_summ.decode(model_output[0], skip_special_tokens=True,
|
54 |
+
clean_up_tokenization_spaces=False)
|
55 |
+
return decoded_output
|
56 |
+
|
57 |
+
def process_input(text):
|
58 |
+
a = [text]
|
59 |
+
a = tokenizer.texts_to_sequences(a)
|
60 |
+
a = np.array(a)
|
61 |
+
a = pad_sequences(a, padding='post', maxlen=100)
|
62 |
+
a = a.reshape((a.shape[0], a.shape[1], 1))
|
63 |
+
prediction = model.predict(np.array(a))
|
64 |
+
for row in prediction:
|
65 |
+
element1 = row[0]
|
66 |
+
element2 = row[1]
|
67 |
+
return "Negative" if element1 > element2 else "Positive"
|
68 |
+
|
69 |
+
# Streamlit app
|
70 |
+
st.title("Indic Sentence Summarization & Sentiment Analysis")
|
71 |
+
st.header("Insightful Echoes: Crafting Summaries with Sentiments (for ਪੰਜਾਬੀ Text)")
|
72 |
+
|
73 |
+
model_choice = st.selectbox("Select the Model", ["Indic-Bert", "RNN"])
|
74 |
+
summarize_before_sentiment = st.checkbox("Summarize before analyzing sentiment")
|
75 |
+
user_input = st.text_area("Enter some text here")
|
76 |
+
|
77 |
+
if st.button("Analyze Sentiment"):
|
78 |
+
if not is_valid_punjabi_text(user_input):
|
79 |
+
st.warning("Please enter valid Punjabi text.")
|
80 |
+
else:
|
81 |
+
sentiment_output = ""
|
82 |
+
if summarize_before_sentiment:
|
83 |
+
summarized_text = summarize(user_input)
|
84 |
+
sentiment_bert = predict_sentiment(summarized_text, model1, tokenizer1)
|
85 |
+
sentiment_output = f'Sentiment (Indic-BERT): {sentiment_bert}\nSummary: {summarized_text}'
|
86 |
+
else:
|
87 |
+
sentiment_bert = predict_sentiment(user_input, model1, tokenizer1)
|
88 |
+
sentiment_output = f'Sentiment (Indic-BERT): {sentiment_bert}'
|
89 |
+
|
90 |
+
if model_choice == "RNN":
|
91 |
+
sentiment_rnn = process_input(user_input)
|
92 |
+
sentiment_output += f"\nSentiment (Bidirectional LSTM): {sentiment_rnn}"
|
93 |
+
|
94 |
+
if summarize_before_sentiment:
|
95 |
+
summarized_text_rnn = summarize(user_input)
|
96 |
+
sentiment_output += f"\nSummary (Bidirectional LSTM): {summarized_text_rnn}"
|
97 |
+
|
98 |
+
st.text_area("Sentiment Output", sentiment_output, height=200)
|