dipankardas011 commited on
Commit
d93f45c
1 Parent(s): 26d78a7

added the first version

Browse files

Signed-off-by: Dipankar Das <dipankardas0115@gmail.com>

Files changed (3) hide show
  1. Dockerfile +27 -0
  2. app.py +28 -0
  3. requirements.txt +6 -0
Dockerfile ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Use the official Python 3.9 image
2
+ FROM python:3.9
3
+
4
+ # Set the working directory to /code
5
+ WORKDIR /code
6
+
7
+ # Copy the current directory contents into the container at /code
8
+ COPY ./requirements.txt /code/requirements.txt
9
+
10
+ # Install requirements.txt
11
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
12
+
13
+ # Set up a new user named "user" with user ID 1000
14
+ RUN useradd -m -u 1000 user
15
+ # Switch to the "user" user
16
+ USER user
17
+ # Set home to the user's home directory
18
+ ENV HOME=/home/user PATH=/home/user/.local/bin:$PATH
19
+
20
+ # Set the working directory to the user's home directory
21
+ WORKDIR $HOME/app
22
+
23
+ # Copy the current directory contents into the container at $HOME/app setting the owner to the user
24
+ COPY --chown=user . $HOME/app
25
+
26
+ # Start the FastAPI app on port 7860, the default port expected by Spaces
27
+ CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI
2
+ from transformers import pipeline
3
+
4
+ # Create a new FastAPI app instance
5
+ app = FastAPI()
6
+
7
+ # Initialize the text generation pipeline
8
+ # This function will be able to generate text
9
+ # given an input.
10
+ pipe = pipeline("text2text-generation",
11
+ model="google/flan-t5-small")
12
+
13
+ # Define a function to handle the GET request at `/generate`
14
+ # The generate() function is defined as a FastAPI route that takes a
15
+ # string parameter called text. The function generates text based on the # input using the pipeline() object, and returns a JSON response
16
+ # containing the generated text under the key "output"
17
+ @app.get("/generate")
18
+ def generate(text: str):
19
+ """
20
+ Using the text2text-generation pipeline from `transformers`, generate text
21
+ from the given input text. The model used is `google/flan-t5-small`, which
22
+ can be found [here](<https://huggingface.co/google/flan-t5-small>).
23
+ """
24
+ # Use the pipeline to generate text from the given input text
25
+ output = pipe(text)
26
+
27
+ # Return the generated text in a JSON response
28
+ return {"output": output[0]["generated_text"]}
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ fastapi==0.74.*
2
+ requests==2.27.*
3
+ uvicorn[standard]==0.17.*
4
+ sentencepiece==0.1.*
5
+ torch==1.11.*
6
+ transformers==4.*