|
import pandas as pd
|
|
import numpy as np
|
|
import streamlit as st
|
|
import pickle
|
|
|
|
|
|
with open('model_v2.pkl', 'rb') as file:
|
|
model = pickle.load(file)
|
|
|
|
def run():
|
|
|
|
st.title('FIFA Overall Rating Score')
|
|
st.write('---')
|
|
|
|
link_gambar = ''
|
|
st.image(link_gambar,
|
|
caption = 'source: google.com')
|
|
|
|
|
|
st.write('Halaman ini berisi model prediksi yang mampu menghasilkan overall rating dari seorang pemain')
|
|
|
|
|
|
with st.form(key='form parameters'):
|
|
nama = st.text_input('Nama Pemain: ')
|
|
age = st.number_input('Usia Pemain: ', min_value=15, max_value=54, value=20)
|
|
height = st.slider('Tinggi Pemain: ', min_value=155, max_value=210, value=175)
|
|
weight = st.slider('Berat Pemain: ', min_value=49, max_value=110, value=75)
|
|
ValueEUR = st.number_input('Harga Pemain: ', value=1500, step=100)
|
|
attack_work_rate = st.selectbox('Attack Level: ', ('Low','Medium', 'High'))
|
|
defensive_work_rate = st.selectbox('Defense Level: ', ('Low','Medium', 'High'))
|
|
pace_total=st.number_input('Pace Total: ', min_value=0, max_value=100)
|
|
shootingtotal = st.number_input('Shooting Total: ', min_value=0, max_value=100)
|
|
passingtotal = st.number_input('Pasing Total: ', min_value=0, max_value=100)
|
|
dribblingtotal = st.number_input('Dribbling Total: ', min_value=0, max_value=100)
|
|
deffendingtotal = st.number_input('Deffending Total: ', min_value=0, max_value=100)
|
|
physicalitytotal = st.number_input('Physicality Total: ', min_value=0, max_value=100)
|
|
|
|
submit=st.form_submit_button('Prediksi')
|
|
data_raw={
|
|
'Name': nama,
|
|
'Age': age,
|
|
'Height': height,
|
|
'Weight': weight,
|
|
'ValueEUR': ValueEUR,
|
|
'AttackingWorkRate': attack_work_rate,
|
|
'DefensiveWorkRate': defensive_work_rate,
|
|
'PaceTotal': pace_total,
|
|
'ShootingTotal': shootingtotal,
|
|
'PassingTotal': passingtotal,
|
|
'DribblingTotal': dribblingtotal,
|
|
'DefendingTotal': deffendingtotal,
|
|
'PhysicalityTotal': physicalitytotal
|
|
}
|
|
|
|
data = pd.DataFrame([data_raw])
|
|
st.dataframe(data)
|
|
|
|
if submit:
|
|
result = model.predict(data)
|
|
st.write(f'### Hasil Overall Score Pemain {nama}: {result[0]:.2f}')
|
|
|
|
if __name__ == '__main__':
|
|
run() |