Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from PyPDF2 import PdfReader | |
import openpyxl | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import GooglePalmEmbeddings | |
from langchain.llms import GooglePalm | |
from langchain.vectorstores import FAISS | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory | |
os.environ['GOOGLE_API_KEY'] = 'your_google_api_key_here' | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_excel_text(excel_docs): | |
text = "" | |
for excel_doc in excel_docs: | |
workbook = openpyxl.load_workbook(filename=excel_doc) | |
for sheet in workbook: | |
for row in sheet: | |
for cell in row: | |
text += str(cell.value) + " " | |
return text.strip() | |
def get_text_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vector_store(text_chunks): | |
embeddings = GooglePalmEmbeddings() | |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) | |
return vector_store | |
def get_conversational_chain(vector_store): | |
llm = GooglePalm() | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=vector_store.as_retriever(), memory=memory) | |
return conversation_chain | |
def get_user_input(user_question): | |
with st.container(): | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chatHistory = response['chat_history'] | |
file_contents = "" | |
left , right = st.columns((2,1)) | |
with left: | |
for i, message in enumerate(st.session_state.chatHistory): | |
if i % 2 == 0: | |
st.markdown(f'<div style="background-color: rgb(30 24 17 / 77%); border-radius: 10px; padding: 10px; margin-bottom: 5px; text-align: end;"><span style="text-align: end;">User:</span> {message.content}</div>', unsafe_allow_html=True) | |
else: | |
st.markdown(f'<div style="background-color: rgb(145 74 1 / 25%); border-radius: 10px; padding: 10px; margin-bottom: 5px; ">Bot: {message.content}</div>', unsafe_allow_html=True) | |
with right: | |
for message in st.session_state.chatHistory: | |
file_contents += f"{message.content}\n" | |
file_name = "Chat_History.txt" | |
def main(): | |
st.set_page_config("DocChat") | |
# Define Streamlit app layout | |
st.markdown("<style>body { background-color: black; color: white; }</style>", unsafe_allow_html=True) | |
st.markdown("<h3 style='color: orange;'>🧾 DocChat - Chat with multiple documents</h3>", unsafe_allow_html=True) | |
st.caption("🚀 Chat bot developed By :- [Dinesh Abeysinghe](https://www.linkedin.com/in/dinesh-abeysinghe-bb773293) | [GitHub Source Code](https://github.com/dineshabey/AI-Chat_with_document)") | |
st.markdown("<div style= 'text-align: center;'>First need to upload PDF file or Excel file. Then click PROCESS PDF file / PROCESS EXCEL file and next you can start chat with document related things <span style='color: orange;'>Please click like button</span>❤️ and support me and enjoy it.</div>", unsafe_allow_html=True) | |
st.write("---") | |
with st.container(): | |
with st.sidebar: | |
st.title("Settings") | |
st.subheader("Upload Documents") | |
st.markdown("**PDF files:**") | |
pdf_docs = st.file_uploader("Upload PDF Files", accept_multiple_files=True) | |
if st.button("Process PDF file"): | |
with st.spinner("Processing PDFs..."): | |
raw_text = get_pdf_text(pdf_docs) | |
text_chunks = get_text_chunks(raw_text) | |
vector_store = get_vector_store(text_chunks) | |
st.session_state.conversation = get_conversational_chain(vector_store) | |
st.success("PDF processed successfully!") | |
st.markdown("**Excel files:**") | |
excel_docs = st.file_uploader("Upload Excel Files", accept_multiple_files=True) | |
if st.button("Process Excel file"): | |
with st.spinner("Processing Excel files..."): | |
raw_text = get_excel_text(excel_docs) | |
text_chunks = get_text_chunks(raw_text) | |
vector_store = get_vector_store(text_chunks) | |
st.session_state.conversation = get_conversational_chain(vector_store) | |
st.success("Excel file processed successfully!") | |
with st.container(): | |
st.subheader("Document Q&A") | |
user_question = st.text_input("Ask a Question from the document") | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chatHistory" not in st.session_state: | |
st.session_state.chatHistory = None | |
if user_question: | |
get_user_input(user_question) | |
if __name__ == "__main__": | |
main() | |