dimentox's picture
Update app.py
3e6963e
raw
history blame
5.06 kB
from __future__ import annotations
import math
import random
import gradio as gr
import torch
from PIL import Image, ImageOps
from diffusers import StableDiffusionPipeline
help_text = """
"""
example_instructions = [
"A river"
]
model_id = "dimentox/heightmapstyle"
def main():
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None)
#example_image = Image.open("imgs/example.jpg").convert("RGB")
def load_example(
steps: int,
randomize_seed: bool,
seed: int,
randomize_cfg: bool,
text_cfg_scale: float,
image_cfg_scale: float,
):
example_instruction = random.choice(example_instructions)
return [example_instruction] + generate(
example_instruction,
steps,
randomize_seed,
seed,
randomize_cfg,
text_cfg_scale,
image_cfg_scale,
)
def generate(
instruction: str,
steps: int,
randomize_seed: bool,
seed: int,
randomize_cfg: bool,
text_cfg_scale: float,
image_cfg_scale: float,
):
seed = random.randint(0, 100000) if randomize_seed else seed
text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale
width, height = input_image.size
factor = 512 / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
if instruction == "":
return [input_image, seed]
generator = torch.manual_seed(seed)
edited_image = pipe(
instruction,
guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
num_inference_steps=steps, generator=generator,
).images[0]
return [seed, text_cfg_scale, image_cfg_scale, edited_image]
def reset():
return [0, "Randomize Seed", 1371, "Fix CFG", 7.5, 1.5, None]
with gr.Blocks() as demo:
gr.HTML("""
""")
with gr.Row():
with gr.Column(scale=1, min_width=100):
generate_button = gr.Button("Generate")
with gr.Column(scale=1, min_width=100):
load_button = gr.Button("Load Example")
with gr.Column(scale=1, min_width=100):
reset_button = gr.Button("Reset")
with gr.Column(scale=3):
instruction = gr.Textbox(lines=1, label="Edit Instruction", interactive=True)
with gr.Row():
steps = gr.Number(value=50, precision=0, label="Steps", interactive=True)
randomize_seed = gr.Radio(
["Fix Seed", "Randomize Seed"],
value="Randomize Seed",
type="index",
show_label=False,
interactive=True,
)
seed = gr.Number(value=1371, precision=0, label="Seed", interactive=True)
randomize_cfg = gr.Radio(
["Fix CFG", "Randomize CFG"],
value="Fix CFG",
type="index",
show_label=False,
interactive=True,
)
text_cfg_scale = gr.Number(value=7.5, label=f"Text CFG", interactive=True)
image_cfg_scale = gr.Number(value=1.5, label=f"Image CFG", interactive=True)
gr.Markdown(help_text)
load_button.click(
fn=load_example,
inputs=[
steps,
randomize_seed,
seed,
randomize_cfg,
text_cfg_scale,
image_cfg_scale,
],
outputs=[input_image, instruction, seed, text_cfg_scale, image_cfg_scale, edited_image],
)
generate_button.click(
fn=generate,
inputs=[
input_image,
instruction,
steps,
randomize_seed,
seed,
randomize_cfg,
text_cfg_scale,
image_cfg_scale,
],
outputs=[seed, text_cfg_scale, image_cfg_scale, edited_image],
)
reset_button.click(
fn=reset,
inputs=[],
outputs=[steps, randomize_seed, seed, randomize_cfg, text_cfg_scale, image_cfg_scale, edited_image],
)
demo.queue(concurrency_count=1)
demo.launch(share=False)
if __name__ == "__main__":
main()
import gradio as gr
gr.Examples(
[["heightmapsstyle", "a lake with a river"], ["heightmapsstyle","greyscale", "a river running though flat planes"]],
[txt, txt_2],
cache_examples=True,
)
gr.load().launch()