Spaces:
Runtime error
Runtime error
import numpy as np | |
from tensorflow.keras.preprocessing.image import img_to_array, load_img | |
import gradio as gr | |
import tensorflow as tf | |
from PIL import Image | |
import cv2 | |
from tensorflow.keras.preprocessing import image | |
# Pipelining the model | |
#from transformers import AutoImageProcessor, AutoModelForImageClassification | |
#processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50") | |
#model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-50") | |
# Loading pre-trained model | |
model = tf.keras.models.load_model('ResNet50_Transfer_Learning.keras') | |
# Emotion labels dictionary | |
emotion_labels = {'angry': 0, 'disgust': 1, 'fear': 2, 'happy': 3, 'neutral': 4, 'sad': 5, 'surprise': 6} | |
index_to_emotion = {v: k for k, v in emotion_labels.items()} | |
index_to_emotion | |
def prepare_image(img_pil): | |
"""Preprocess the PIL image to fit model's input requirements.""" | |
# Convert the PIL image to a numpy array with the target size | |
img = img_pil.resize((224, 224)) | |
img_array = img_to_array(img) | |
img_array = np.expand_dims(img_array, axis=0) # Convert single image to a batch. | |
img_array /= 255.0 # Rescale pixel values to [0,1], as done during training | |
return img_array | |
# Define the Gradio interface (assuming you have an index_to_emotion dictionary) | |
def predict_emotion(image): | |
"""Predict emotion from an uploaded image.""" | |
# Preprocess the image | |
processed_image = prepare_image(image) | |
# Make prediction using the model | |
prediction = model.predict(processed_image) | |
# Get the emotion label with the highest probability | |
predicted_class = np.argmax(prediction, axis=1) | |
predicted_emotion = index_to_emotion.get(predicted_class[0], "Unknown Emotion") | |
return predicted_emotion | |
interface = gr.Interface( | |
fn=predict_emotion, # Your prediction function | |
inputs=gr.Image(type="pil"), # Input for uploading an image, directly compatible with PIL images | |
outputs="text", # Output as text displaying the predicted emotion | |
title="Emotion Detection", | |
description="Upload an pimage and see the predicted emotion." | |
) | |
# Launch the Gradio interface | |
interface.launch(share=True) | |