|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter |
|
from langchain.vectorstores import Chroma |
|
from langchain.chains import RetrievalQAWithSourcesChain |
|
from langchain.memory import ConversationBufferWindowMemory |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.prompts.chat import ( |
|
ChatPromptTemplate, |
|
SystemMessagePromptTemplate, |
|
HumanMessagePromptTemplate, |
|
) |
|
from langchain.document_loaders import PyPDFLoader |
|
import os |
|
import chainlit as cl |
|
from langchain.prompts import PromptTemplate |
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) |
|
|
|
system_template = """Use the following pieces of context to answer the users question. |
|
If you don't know the answer, just say that you don't know, don't try to make up an answer. |
|
ALWAYS return a "SOURCES" part in your answer. |
|
The "SOURCES" part should be a reference to the source of the document from which you got your answer. |
|
Example of your response should be: |
|
``` |
|
The answer is foo |
|
SOURCES: xyz |
|
``` |
|
Begin! |
|
---------------- |
|
{summaries}""" |
|
messages = [ |
|
SystemMessagePromptTemplate.from_template(system_template), |
|
HumanMessagePromptTemplate.from_template("{question}"), |
|
] |
|
prompt = ChatPromptTemplate.from_messages(messages) |
|
chain_type_kwargs = {"prompt": prompt} |
|
|
|
@cl.on_chat_start |
|
async def start(): |
|
await cl.Avatar( |
|
name="ChatPDF", |
|
url="https://avatars.githubusercontent.com/u/128686189?s=400&u=a1d1553023f8ea0921fba0debbe92a8c5f840dd9&v=4", |
|
|
|
).send() |
|
|
|
|
|
@cl.langchain_factory(use_async=True) |
|
async def init(): |
|
files = None |
|
|
|
|
|
while files == None: |
|
files = await cl.AskFileMessage( |
|
content="Hey, Welcome to ChatPDF!\n\nChatPDF is a smart, user-friendly tool that integrates state-of-the-art AI models with text extraction and embedding capabilities to create a unique, conversational interaction with your PDF documents.\n\nSimply upload your PDF, ask your questions, and ChatPDF will deliver the most relevant answers directly from your document.\n\nPlease upload a PDF file to begin!",max_size_mb=100, accept=["application/pdf"] |
|
).send() |
|
|
|
file = files[0] |
|
|
|
msg = cl.Message(content=f'''Processing "{file.name}"...''') |
|
await msg.send() |
|
|
|
|
|
|
|
with open(os.path.join(file.name), "wb") as f: |
|
f.write(file.content) |
|
|
|
print(file.name) |
|
|
|
loader = PyPDFLoader(file.name) |
|
pages = loader.load_and_split() |
|
|
|
|
|
|
|
page_counts = {} |
|
|
|
for document in pages: |
|
page_number = document.metadata['page'] |
|
|
|
|
|
|
|
page_counts[page_number] = page_counts.get(page_number, 0) + 1 |
|
|
|
|
|
page_split_info = f"Page-{page_number+1}.{page_counts[page_number]}" |
|
|
|
|
|
document.metadata['page_split_info'] = page_split_info |
|
|
|
|
|
|
|
|
|
embeddings = OpenAIEmbeddings() |
|
docsearch = await cl.make_async(Chroma.from_documents)( |
|
pages, embeddings |
|
) |
|
|
|
|
|
memory = ConversationBufferWindowMemory( |
|
k=5, |
|
memory_key='chat_history', |
|
return_messages=True, |
|
output_key='answer' |
|
) |
|
|
|
|
|
chain = ConversationalRetrievalChain.from_llm( |
|
ChatOpenAI(temperature=0, model="gpt-3.5-turbo-16k", streaming=True), |
|
chain_type="stuff", |
|
retriever=docsearch.as_retriever(search_kwargs={'k':10}), |
|
memory=memory, |
|
return_source_documents=True, |
|
) |
|
|
|
|
|
|
|
cl.user_session.set("texts", pages) |
|
|
|
|
|
await msg.update(content=f''' "{file.name}" processed. You can now ask questions!''') |
|
|
|
|
|
return chain |
|
|
|
|
|
@cl.langchain_postprocess |
|
async def process_response(res): |
|
answer = res["answer"] |
|
source_documents = res['source_documents'] |
|
content = [source_documents[i].page_content for i in range(len(source_documents))] |
|
name = [source_documents[i].metadata['page_split_info'] for i in range(len(source_documents))] |
|
source_elements = [ |
|
cl.Text(content=content[i], name=name[i]) for i in range(len(source_documents)) |
|
] |
|
|
|
if source_documents: |
|
answer += f"\n\nSources: {', '.join([source_documents[i].metadata['page_split_info'] for i in range(len(source_documents))])}" |
|
else: |
|
answer += "\n\nNo sources found" |
|
|
|
await cl.Message(content=answer, elements=source_elements).send() |
|
|