Spaces:
Runtime error
Runtime error
enable live pose conditining
Browse files
app.py
CHANGED
@@ -3,6 +3,31 @@ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
|
3 |
from diffusers import UniPCMultistepScheduler
|
4 |
import gradio as gr
|
5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Constants
|
8 |
low_threshold = 100
|
@@ -28,41 +53,84 @@ pipe.enable_xformers_memory_efficient_attention()
|
|
28 |
# Generator seed,
|
29 |
generator = torch.manual_seed(0)
|
30 |
|
|
|
31 |
def get_pose(image):
|
32 |
-
return pose_model(image)
|
33 |
-
|
34 |
-
|
35 |
-
def generate_images(image, prompt):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
|
|
|
3 |
from diffusers import UniPCMultistepScheduler
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
+
import base64
|
7 |
+
from io import BytesIO
|
8 |
+
from PIL import Image
|
9 |
+
# live conditioning
|
10 |
+
canvas_html = "<pose-canvas id='canvas-root' style='display:flex;max-width: 500px;margin: 0 auto;'></pose-canvas>"
|
11 |
+
load_js = """
|
12 |
+
async () => {
|
13 |
+
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/pose-gradio.js"
|
14 |
+
fetch(url)
|
15 |
+
.then(res => res.text())
|
16 |
+
.then(text => {
|
17 |
+
const script = document.createElement('script');
|
18 |
+
script.type = "module"
|
19 |
+
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
|
20 |
+
document.head.appendChild(script);
|
21 |
+
});
|
22 |
+
}
|
23 |
+
"""
|
24 |
+
get_js_image = """
|
25 |
+
async (image_in_img, prompt, image_file_live_opt, live_conditioning) => {
|
26 |
+
const canvasEl = document.getElementById("canvas-root");
|
27 |
+
const data = canvasEl? canvasEl._data : null;
|
28 |
+
return [image_in_img, prompt, image_file_live_opt, data]
|
29 |
+
}
|
30 |
+
"""
|
31 |
|
32 |
# Constants
|
33 |
low_threshold = 100
|
|
|
53 |
# Generator seed,
|
54 |
generator = torch.manual_seed(0)
|
55 |
|
56 |
+
|
57 |
def get_pose(image):
|
58 |
+
return pose_model(image)
|
59 |
+
|
60 |
+
|
61 |
+
def generate_images(image, prompt, image_file_live_opt='file', live_conditioning=None):
|
62 |
+
if image is None and 'image' not in live_conditioning:
|
63 |
+
raise gr.Error("Please provide an image")
|
64 |
+
try:
|
65 |
+
if image_file_live_opt == 'file':
|
66 |
+
pose = get_pose(image)
|
67 |
+
elif image_file_live_opt == 'webcam':
|
68 |
+
base64_img = live_conditioning['image']
|
69 |
+
image_data = base64.b64decode(base64_img.split(',')[1])
|
70 |
+
pose = Image.open(BytesIO(image_data)).convert(
|
71 |
+
'RGB').resize((512, 512))
|
72 |
+
output = pipe(
|
73 |
+
prompt,
|
74 |
+
pose,
|
75 |
+
generator=generator,
|
76 |
+
num_images_per_prompt=3,
|
77 |
+
num_inference_steps=20,
|
78 |
+
)
|
79 |
+
all_outputs = []
|
80 |
+
all_outputs.append(pose)
|
81 |
+
for image in output.images:
|
82 |
+
all_outputs.append(image)
|
83 |
+
return all_outputs
|
84 |
+
except Exception as e:
|
85 |
+
raise gr.Error(str(e))
|
86 |
+
|
87 |
+
|
88 |
+
def toggle(choice):
|
89 |
+
if choice == "file":
|
90 |
+
return gr.update(visible=True, value=None), gr.update(visible=False, value=None)
|
91 |
+
elif choice == "webcam":
|
92 |
+
return gr.update(visible=False, value=None), gr.update(visible=True, value=canvas_html)
|
93 |
+
|
94 |
+
|
95 |
+
with gr.Blocks() as blocks:
|
96 |
+
gr.Markdown("""
|
97 |
+
## Generate Uncanny Faces with ControlNet Stable Diffusion
|
98 |
+
[Check out our blog to see how this was done (and train your own controlnet)](https://huggingface.co/blog/train-your-controlnet)
|
99 |
+
""")
|
100 |
+
with gr.Row():
|
101 |
+
live_conditioning = gr.JSON(value={}, visible=False)
|
102 |
+
with gr.Column():
|
103 |
+
image_file_live_opt = gr.Radio(["file", "webcam"], value="file",
|
104 |
+
label="How would you like to upload your image?")
|
105 |
+
image_in_img = gr.Image(source="upload", visible=True, type="pil")
|
106 |
+
canvas = gr.HTML(None, elem_id="canvas_html", visible=False)
|
107 |
+
|
108 |
+
image_file_live_opt.change(fn=toggle,
|
109 |
+
inputs=[image_file_live_opt],
|
110 |
+
outputs=[image_in_img, canvas],
|
111 |
+
queue=False)
|
112 |
+
prompt = gr.Textbox(
|
113 |
+
label="Enter your prompt",
|
114 |
+
max_lines=1,
|
115 |
+
placeholder="best quality, extremely detailed",
|
116 |
+
)
|
117 |
+
run_button = gr.Button("Generate")
|
118 |
+
with gr.Column():
|
119 |
+
gallery = gr.Gallery().style(grid=[2], height="auto")
|
120 |
+
run_button.click(fn=generate_images,
|
121 |
+
inputs=[image_in_img, prompt,
|
122 |
+
image_file_live_opt, live_conditioning],
|
123 |
+
outputs=[gallery],
|
124 |
+
_js=get_js_image)
|
125 |
+
blocks.load(None, None, None, _js=load_js)
|
126 |
|
127 |
+
gr.Examples(fn=generate_images,
|
128 |
+
examples=[
|
129 |
+
["./yoga1.jpeg",
|
130 |
+
"best quality, extremely detailed"]
|
131 |
+
],
|
132 |
+
inputs=[image_in_img, prompt],
|
133 |
+
outputs=[gallery],
|
134 |
+
cache_examples=True)
|
135 |
|
136 |
+
blocks.launch(debug=True)
|