Spaces:
Runtime error
Runtime error
testing canny for now only
Browse files
app.py
CHANGED
@@ -1,16 +1,13 @@
|
|
1 |
-
from
|
2 |
-
from diffusers import
|
|
|
3 |
import gradio as gr
|
4 |
-
import
|
5 |
-
import torch
|
6 |
import base64
|
7 |
-
import cv2
|
8 |
from io import BytesIO
|
9 |
from PIL import Image, ImageFilter
|
10 |
-
|
11 |
-
|
12 |
-
low_threshold = 100
|
13 |
-
high_threshold = 200
|
14 |
|
15 |
canvas_html = '<pose-maker/>'
|
16 |
load_js = """
|
@@ -35,24 +32,27 @@ async (canvas, prompt) => {
|
|
35 |
}
|
36 |
"""
|
37 |
|
38 |
-
# Models
|
39 |
-
controlnet = ControlNetModel.from_pretrained(
|
40 |
-
|
41 |
-
)
|
42 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
43 |
-
|
44 |
-
)
|
45 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
#
|
48 |
-
#
|
49 |
-
pipe.enable_model_cpu_offload()
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
|
56 |
|
57 |
def get_canny_filter(image):
|
58 |
if not isinstance(image, np.ndarray):
|
@@ -70,19 +70,19 @@ def generate_images(canvas, prompt):
|
|
70 |
image_data = base64.b64decode(base64_img.split(',')[1])
|
71 |
input_img = Image.open(BytesIO(image_data)).convert(
|
72 |
'RGB').resize((512, 512))
|
73 |
-
input_img = input_img.filter(ImageFilter.GaussianBlur(radius=
|
74 |
input_img = get_canny_filter(input_img)
|
75 |
-
output = pipe(
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
all_outputs
|
84 |
-
for image in output.images:
|
85 |
-
|
86 |
return all_outputs
|
87 |
except Exception as e:
|
88 |
raise gr.Error(str(e))
|
|
|
1 |
+
# from controlnet_aux import OpenposeDetector
|
2 |
+
# from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
3 |
+
# from diffusers import UniPCMultistepScheduler
|
4 |
import gradio as gr
|
5 |
+
# import torch
|
|
|
6 |
import base64
|
|
|
7 |
from io import BytesIO
|
8 |
from PIL import Image, ImageFilter
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
|
|
|
|
11 |
|
12 |
canvas_html = '<pose-maker/>'
|
13 |
load_js = """
|
|
|
32 |
}
|
33 |
"""
|
34 |
|
35 |
+
# # Models
|
36 |
+
# controlnet = ControlNetModel.from_pretrained(
|
37 |
+
# "lllyasviel/sd-controlnet-depth", torch_dtype=torch.float16
|
38 |
+
# )
|
39 |
+
# pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
40 |
+
# "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
|
41 |
+
# )
|
42 |
+
# pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
43 |
+
|
44 |
+
# # This command loads the individual model components on GPU on-demand. So, we don't
|
45 |
+
# # need to explicitly call pipe.to("cuda").
|
46 |
+
# pipe.enable_model_cpu_offload()
|
47 |
|
48 |
+
# # xformers
|
49 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
|
|
50 |
|
51 |
+
# # Generator seed,
|
52 |
+
# generator = torch.manual_seed(0)
|
53 |
|
54 |
+
low_threshold = 100
|
55 |
+
high_threshold = 200
|
56 |
|
57 |
def get_canny_filter(image):
|
58 |
if not isinstance(image, np.ndarray):
|
|
|
70 |
image_data = base64.b64decode(base64_img.split(',')[1])
|
71 |
input_img = Image.open(BytesIO(image_data)).convert(
|
72 |
'RGB').resize((512, 512))
|
73 |
+
input_img = input_img.filter(ImageFilter.GaussianBlur(radius=2))
|
74 |
input_img = get_canny_filter(input_img)
|
75 |
+
# output = pipe(
|
76 |
+
# prompt,
|
77 |
+
# input_img,
|
78 |
+
# generator=generator,
|
79 |
+
# num_images_per_prompt=3,
|
80 |
+
# num_inference_steps=20,
|
81 |
+
# )
|
82 |
+
all_outputs = [input_img, input_img, input_img]
|
83 |
+
# all_outputs.append(input_img)
|
84 |
+
# for image in output.images:
|
85 |
+
# all_outputs.append(image)
|
86 |
return all_outputs
|
87 |
except Exception as e:
|
88 |
raise gr.Error(str(e))
|