dietrben's picture
Update app.py
bef37f2 verified
raw
history blame
1.4 kB
import gradio as gr
import tensorflow as tf
from PIL import Image
import numpy as np
# Laden des vortrainierten Pokémon-Modells
model_path = "pokemon_classifier_model.h5"
model = tf.keras.models.load_model(model_path)
# Labels für den Pokémon Classifier
labels = [
'Balastoise','Charizard','Venusaur'
]
def predict_pokemon(image):
# Preprocess image
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
image = image.resize((299, 299))
image = np.array(image)
image = np.expand_dims(image, axis=0) # same as image[None, ...]
# Predict
predictions = model.predict(image)
prediction = np.argmax(predictions, axis=1)[0]
confidence = np.max(predictions)
# Vorbereiten der Ausgabe
result = f"Predicted Pokémon: {labels[prediction]} with confidence: {confidence:.2f}"
return result
# Erstellen der Gradio-Oberfläche
input_image = gr.Image()
output_label = gr.Label()
interface = gr.Interface(fn=predict_pokemon,
inputs=input_image,
outputs=output_label,
examples=["Blastoise.jpg", "Charizard.png", "Venusaur.png"],
title="Pokémon Classifier",
description="Drag and drop an image or select an example below to predict the Pokémon.")
# Interface starten
interface.launch()