diegokauer's picture
Update model.py
0499314
import os
import logging
import torch
import datetime
import requests
from google.cloud import storage
from transformers import AutoImageProcessor, AutoModelForObjectDetection, ViTImageProcessor, Swinv2ForImageClassification
from label_studio_ml.model import LabelStudioMLBase
from lxml import etree
from uuid import uuid4
from PIL import Image
from creds import get_credentials
from io import BytesIO
def generate_download_signed_url_v4(blob_name):
"""Generates a v4 signed URL for downloading a blob.
Note that this method requires a service account key file. You can not use
this if you are using Application Default Credentials from Google Compute
Engine or from the Google Cloud SDK.
"""
bucket_name = os.getenv("bucket")
storage_client = storage.Client()
bucket = storage_client.bucket(bucket_name)
blob = bucket.blob(blob_name.replace(f"gs://{bucket_name}/", ""))
url = blob.generate_signed_url(
version="v4",
# This URL is valid for 15 minutes
expiration=datetime.timedelta(minutes=15),
# Allow GET requests using this URL.
method="GET",
)
return url
class Model(LabelStudioMLBase):
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = get_credentials()
image_processor = AutoImageProcessor.from_pretrained("diegokauer/conditional-detr-coe-int-v2")
model = AutoModelForObjectDetection.from_pretrained("diegokauer/conditional-detr-coe-int-v2")
seg_image_processor = ViTImageProcessor.from_pretrained("diegokauer/int-pet-classifier-v2")
seg_model = Swinv2ForImageClassification.from_pretrained("diegokauer/int-pet-classifier-v2")
id2label = model.config.id2label
seg_id2label = seg_model.config.id2label
def predict(self, tasks, **kwargs):
""" This is where inference happens: model returns
the list of predictions based on input list of tasks
"""
predictions = []
for task in tasks:
url = task["data"]["image"]
response = requests.get(generate_download_signed_url_v4(url))
print(response)
image_data = BytesIO(response.content)
image = Image.open(image_data)
original_width, original_height = image.size
with torch.no_grad():
inputs = self.image_processor(images=image, return_tensors="pt")
outputs = self.model(**inputs)
target_sizes = torch.tensor([image.size[::-1]])
results = self.image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0]
result_list = []
for score, label, box in zip(results['scores'], results['labels'], results['boxes']):
label_id = str(uuid4())
x, y, x2, y2 = tuple(box)
if self.id2label[label.item()] == 'Propuesta':
with torch.no_grad():
pred_label_id = str(uuid4())
image = image.crop((x.item(), y.item(), x2.item(), y2.item()))
inputs = self.seg_image_processor(images=image, return_tensors="pt")
logits = self.seg_model(**inputs).logits
logits = 1 / (1 + torch.exp(-logits))
print(logits)
preds = logits > 0.5
preds = [self.seg_id2label[i] for i, pred in enumerate(preds.squeeze().tolist()) if pred]
preds = ["No Reportado"] if "No Reportado" in preds else preds
result_list.append({
"value": {
"choices": preds
},
"id": pred_label_id,
"from_name": "propuesta",
"to_name": "image",
"type": "choices"
})
result_list.append({
'id': label_id,
'original_width': original_width,
'original_height': original_height,
'from_name': "bbox",
'to_name': "image",
'type': 'rectangle',
'score': score.item(), # per-region score, visible in the editor
'value': {
'x': x.item() * 100.0 / original_width,
'y': y.item() * 100.0 / original_height,
'width': (x2-x).item() * 100.0 / original_width,
'height': (y2-y).item() * 100.0 / original_height,
'rotation': 0,
}
})
result_list.append({
'id': label_id,
'original_width': original_width,
'original_height': original_height,
'from_name': "label",
'to_name': "image",
'type': 'labels',
'score': score.item(), # per-region score, visible in the editor
'value': {
'x': x.item() * 100.0 / original_width,
'y': y.item() * 100.0 / original_height,
'width': (x2-x).item() * 100.0 / original_width,
'height': (y2-y).item() * 100.0 / original_height,
'rotation': 0,
'labels': [self.id2label[label.item()]]
}
})
predictions.append({
'score': results['scores'].mean().item(), # prediction overall score, visible in the data manager columns
'model_version': 'cdetr_v2.5', # all predictions will be differentiated by model version
'result': result_list
})
print(predictions)
return predictions
def fit(self, event, annotations, **kwargs):
""" This is where training happens: train your model given list of annotations,
then returns dict with created links and resources
"""
return {'path/to/created/model': 'my/model.bin'}