OneFormerMentoria / demo /predictor.py
praeclarumjj3's picture
Create Space
6e445f1
# Copyright (c) Facebook, Inc. and its affiliates.
# Copied from: https://github.com/facebookresearch/detectron2/blob/master/demo/predictor.py
import atexit
import bisect
import multiprocessing as mp
from collections import deque
import cv2
import torch
from detectron2.data import MetadataCatalog
from defaults import DefaultPredictor
from detectron2.utils.video_visualizer import VideoVisualizer
from visualizer import ColorMode, Visualizer
class VisualizationDemo(object):
def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False):
"""
Args:
cfg (CfgNode):
instance_mode (ColorMode):
parallel (bool): whether to run the model in different processes from visualization.
Useful since the visualization logic can be slow.
"""
self.metadata = MetadataCatalog.get(
cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused"
)
if 'cityscapes_fine_sem_seg_val' in cfg.DATASETS.TEST[0]:
from cityscapesscripts.helpers.labels import labels
stuff_colors = [k.color for k in labels if k.trainId != 255]
self.metadata = self.metadata.set(stuff_colors=stuff_colors)
self.cpu_device = torch.device("cpu")
self.instance_mode = instance_mode
self.parallel = parallel
if parallel:
num_gpu = torch.cuda.device_count()
self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu)
else:
self.predictor = DefaultPredictor(cfg)
def run_on_image(self, image, task, sem_gt, pan_gt, ins_gt, box_gt):
"""
Args:
image (np.ndarray): an image of shape (H, W, C) (in BGR order).
This is the format used by OpenCV.
Returns:
predictions (dict): the output of the model.
vis_output (VisImage): the visualized image output.
"""
vis_output = None
# Convert image from OpenCV BGR format to Matplotlib RGB format.
image = image[:, :, ::-1]
vis_output = {}
if task == 'panoptic':
visualizer = Visualizer(image, metadata=self.metadata, instance_mode=0)
predictions = self.predictor(image, "panoptic")
panoptic_seg, segments_info = predictions["panoptic_seg"]
vis_output['panoptic'] = visualizer.draw_panoptic_seg_predictions(
panoptic_seg.to(self.cpu_device), segments_info, alpha=1
)
# visualizer = Visualizer(image, metadata=self.metadata, instance_mode=0)
# vis_output['pan_gt'] = visualizer.draw_panoptic_seg(
# pan_gt[0].to(self.cpu_device), pan_gt[1], alpha=1
# )
if task == 'panoptic' or task == 'semantic':
visualizer = Visualizer(image, metadata=self.metadata, instance_mode=1)
predictions = self.predictor(image, "semantic")
vis_output['semantic'] = visualizer.draw_sem_seg(
predictions["sem_seg"].argmax(dim=0).to(self.cpu_device), alpha=1
)
# visualizer = Visualizer(image, metadata=self.metadata, instance_mode=1)
# vis_output['gt_sem'] = visualizer.draw_sem_seg(
# sem_gt.to(self.cpu_device), alpha=1
# )
if task == 'panoptic' or task == 'instance':
visualizer = Visualizer(image, metadata=self.metadata, instance_mode=2)
predictions = self.predictor(image, "instance")
instances = predictions["instances"].to(self.cpu_device)
vis_output['instance'] = visualizer.draw_instance_predictions(predictions=instances, alpha=1)
if 'boxes' in predictions:
boxes, labels, scores = predictions["boxes"]
visualizer = Visualizer(image, False, metadata=self.metadata, instance_mode=0)
vis_output['boxes'] = visualizer.draw_box_predictions(
boxes.to(self.cpu_device), labels.to(self.cpu_device), scores.to(self.cpu_device))
# visualizer = Visualizer(image, metadata=self.metadata, instance_mode=2)
# vis_output['ins_gt'] = visualizer.draw_instance_predictions(predictions=ins_gt.to(self.cpu_device), alpha=1)
# vis_output['input'] = visualizer.get_image(image)
return predictions, vis_output
class AsyncPredictor:
"""
A predictor that runs the model asynchronously, possibly on >1 GPUs.
Because rendering the visualization takes considerably amount of time,
this helps improve throughput a little bit when rendering videos.
"""
class _StopToken:
pass
class _PredictWorker(mp.Process):
def __init__(self, cfg, task_queue, result_queue):
self.cfg = cfg
self.task_queue = task_queue
self.result_queue = result_queue
super().__init__()
def run(self):
predictor = DefaultPredictor(self.cfg)
while True:
task = self.task_queue.get()
if isinstance(task, AsyncPredictor._StopToken):
break
idx, data = task
result = predictor(data)
self.result_queue.put((idx, result))
def __init__(self, cfg, num_gpus: int = 1):
"""
Args:
cfg (CfgNode):
num_gpus (int): if 0, will run on CPU
"""
num_workers = max(num_gpus, 1)
self.task_queue = mp.Queue(maxsize=num_workers * 3)
self.result_queue = mp.Queue(maxsize=num_workers * 3)
self.procs = []
for gpuid in range(max(num_gpus, 1)):
cfg = cfg.clone()
cfg.defrost()
cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu"
self.procs.append(
AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue)
)
self.put_idx = 0
self.get_idx = 0
self.result_rank = []
self.result_data = []
for p in self.procs:
p.start()
atexit.register(self.shutdown)
def put(self, image):
self.put_idx += 1
self.task_queue.put((self.put_idx, image))
def get(self):
self.get_idx += 1 # the index needed for this request
if len(self.result_rank) and self.result_rank[0] == self.get_idx:
res = self.result_data[0]
del self.result_data[0], self.result_rank[0]
return res
while True:
# make sure the results are returned in the correct order
idx, res = self.result_queue.get()
if idx == self.get_idx:
return res
insert = bisect.bisect(self.result_rank, idx)
self.result_rank.insert(insert, idx)
self.result_data.insert(insert, res)
def __len__(self):
return self.put_idx - self.get_idx
def __call__(self, image):
self.put(image)
return self.get()
def shutdown(self):
for _ in self.procs:
self.task_queue.put(AsyncPredictor._StopToken())
@property
def default_buffer_size(self):
return len(self.procs) * 5