Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
from sklearn.linear_model import LinearRegression
|
5 |
+
from datetime import timedelta
|
6 |
+
|
7 |
+
def plot_and_predict(zip, prediction_days):
|
8 |
+
# Read and process the real estate data from Zillow
|
9 |
+
df = pd.read_csv('https://files.zillowstatic.com/research/public_csvs/zhvi/Zip_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv')
|
10 |
+
df = df[df['RegionName'] == int(zip)]
|
11 |
+
df = df.loc[:, '2000-01-31':]
|
12 |
+
df = df.T.reset_index()
|
13 |
+
df.columns = ['Date', 'Price']
|
14 |
+
df['Date'] = pd.to_datetime(df['Date'])
|
15 |
+
|
16 |
+
# Train linear regression model
|
17 |
+
df['Timestamp'] = (df['Date'] - pd.Timestamp("1970-01-01")) // pd.Timedelta('1D')
|
18 |
+
X = df['Timestamp'].values.reshape(-1, 1)
|
19 |
+
y = df['Price'].values
|
20 |
+
model = LinearRegression()
|
21 |
+
model.fit(X, y)
|
22 |
+
|
23 |
+
# Predict future prices
|
24 |
+
last_timestamp = df['Timestamp'].iloc[-1]
|
25 |
+
future_timestamps = [last_timestamp + i for i in range(1, prediction_days + 1)]
|
26 |
+
predicted_prices = model.predict(pd.np.array(future_timestamps).reshape(-1, 1))
|
27 |
+
|
28 |
+
# Prepare data for plotting
|
29 |
+
historical_prices_trace = go.Scatter(
|
30 |
+
x=df['Date'],
|
31 |
+
y=df['Price'],
|
32 |
+
mode="lines",
|
33 |
+
name="Historical Prices"
|
34 |
+
)
|
35 |
+
future_dates = [df['Date'].iloc[-1] + timedelta(days=i) for i in range(1, prediction_days + 1)]
|
36 |
+
predicted_prices_trace = go.Scatter(
|
37 |
+
x=future_dates,
|
38 |
+
y=predicted_prices,
|
39 |
+
mode="lines",
|
40 |
+
name="Predicted Prices"
|
41 |
+
)
|
42 |
+
|
43 |
+
# Plot data
|
44 |
+
fig = go.Figure()
|
45 |
+
fig.add_trace(historical_prices_trace)
|
46 |
+
fig.add_trace(predicted_prices_trace)
|
47 |
+
fig.update_layout(
|
48 |
+
title=f"Real Estate Price Prediction for Zip Code {zip}",
|
49 |
+
xaxis_title="Date",
|
50 |
+
yaxis_title="Price",
|
51 |
+
legend_title_text="Data"
|
52 |
+
)
|
53 |
+
|
54 |
+
return fig
|
55 |
+
|
56 |
+
# Gradio interface
|
57 |
+
interface = gr.Interface(
|
58 |
+
fn=plot_and_predict,
|
59 |
+
inputs=[
|
60 |
+
gr.Textbox(label="ZIP Code"),
|
61 |
+
gr.Slider(minimum=1, maximum=365, step=1, label="Prediction Days"),
|
62 |
+
],
|
63 |
+
outputs="plot"
|
64 |
+
)
|
65 |
+
|
66 |
+
# Launch the app
|
67 |
+
interface.launch(debug=True)
|