Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
def plot_real_estate_correlation(state):
|
7 |
+
# Read the CSV file
|
8 |
+
df = pd.read_csv('https://files.zillowstatic.com/research/public_csvs/zhvi/Zip_zhvi_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv')
|
9 |
+
|
10 |
+
# Filter for the given state
|
11 |
+
df = df[df['State'] == state.upper()]
|
12 |
+
|
13 |
+
# Extract the list of ZIP codes and price data
|
14 |
+
zip_codes = df['RegionName'].unique()
|
15 |
+
price_data = df.iloc[:, 7:] # Assuming price data starts from the 8th column
|
16 |
+
|
17 |
+
# Drop rows with missing data to avoid issues in correlation calculation
|
18 |
+
price_data = price_data.dropna(axis=1, how='all')
|
19 |
+
|
20 |
+
# Calculate the correlation matrix for ZIP codes
|
21 |
+
corr_matrix = price_data.T.corr()
|
22 |
+
|
23 |
+
# Prepare the grid data for 3D plot
|
24 |
+
x_data, y_data = np.meshgrid(zip_codes, zip_codes)
|
25 |
+
z_data = corr_matrix.values
|
26 |
+
|
27 |
+
# Create the 3D surface plot
|
28 |
+
fig = go.Figure(data=[go.Surface(z=z_data, x=x_data, y=y_data)])
|
29 |
+
|
30 |
+
# Update plot layout
|
31 |
+
fig.update_layout(
|
32 |
+
title=f'3D Correlation Matrix of Housing Prices in {state}',
|
33 |
+
scene=dict(
|
34 |
+
xaxis_title='ZIP Code',
|
35 |
+
yaxis_title='ZIP Code',
|
36 |
+
zaxis_title='Correlation',
|
37 |
+
),
|
38 |
+
autosize=True
|
39 |
+
)
|
40 |
+
|
41 |
+
return fig
|
42 |
+
|
43 |
+
iface = gr.Interface(fn=plot_real_estate_correlation,
|
44 |
+
inputs=[gr.components.Textbox(label="State (e.g., 'NJ' for New Jersey)")],
|
45 |
+
outputs=gr.Plot())
|
46 |
+
|
47 |
+
iface.launch(share=False, debug=True)
|