Update app.py
Browse files
app.py
CHANGED
@@ -2,22 +2,15 @@ import gradio as gr
|
|
2 |
from gpt4all import GPT4All
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
|
5 |
-
title = "
|
6 |
|
7 |
description = """
|
8 |
-
|
9 |
-
|
10 |
-
🔨 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue.
|
11 |
-
|
12 |
-
Mistral does not support system prompt symbol (such as ```<<SYS>>```) now, input your system prompt in the first message if you need. Learn more: [Guardrailing Mistral 7B](https://docs.mistral.ai/usage/guardrailing).
|
13 |
-
"""
|
14 |
-
|
15 |
-
"""
|
16 |
-
[Model From TheBloke/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF)
|
17 |
-
[Mistral-instruct-v0.1 System prompt](https://docs.mistral.ai/usage/guardrailing)
|
18 |
"""
|
19 |
|
20 |
model_path = "models"
|
|
|
|
|
21 |
model_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf"
|
22 |
hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)
|
23 |
|
@@ -25,35 +18,37 @@ print("Start the model init process")
|
|
25 |
model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu")
|
26 |
print("Finish the model init process")
|
27 |
|
28 |
-
model.config["promptTemplate"] = "
|
29 |
model.config["systemPrompt"] = ""
|
30 |
model._is_chat_session_activated = False
|
31 |
|
32 |
max_new_tokens = 2048
|
33 |
|
|
|
|
|
34 |
def generater(message, history, temperature, top_p, top_k):
|
35 |
-
prompt = "
|
36 |
-
for user_message, assistant_message in history:
|
37 |
-
prompt += model.config["promptTemplate"].format(user_message)
|
38 |
-
prompt += assistant_message + "</s>"
|
39 |
-
prompt += model.config["promptTemplate"].format(message)
|
40 |
outputs = []
|
41 |
for token in model.generate(prompt=prompt, temp=temperature, top_k = top_k, top_p = top_p, max_tokens = max_new_tokens, streaming=True):
|
42 |
outputs.append(token)
|
43 |
yield "".join(outputs)
|
44 |
|
|
|
45 |
def vote(data: gr.LikeData):
|
46 |
if data.liked:
|
47 |
return
|
48 |
else:
|
49 |
return
|
50 |
|
51 |
-
|
|
|
|
|
52 |
|
|
|
53 |
additional_inputs=[
|
54 |
gr.Slider(
|
55 |
label="temperature",
|
56 |
-
value=0.
|
57 |
minimum=0.0,
|
58 |
maximum=2.0,
|
59 |
step=0.05,
|
@@ -71,7 +66,7 @@ additional_inputs=[
|
|
71 |
),
|
72 |
gr.Slider(
|
73 |
label="top_k",
|
74 |
-
value=
|
75 |
minimum=0,
|
76 |
maximum=1000,
|
77 |
step=1,
|
@@ -79,9 +74,7 @@ additional_inputs=[
|
|
79 |
info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit.",
|
80 |
)
|
81 |
]
|
82 |
-
|
83 |
-
character = "Sherlock Holmes"
|
84 |
-
series = "Arthur Conan Doyle's novel"
|
85 |
|
86 |
iface = gr.ChatInterface(
|
87 |
fn = generater,
|
@@ -90,17 +83,17 @@ iface = gr.ChatInterface(
|
|
90 |
chatbot=chatbot,
|
91 |
additional_inputs=additional_inputs,
|
92 |
examples=[
|
93 |
-
["Hello
|
94 |
-
|
95 |
-
["You are a helpful and honest assistant. Always answer as helpfully as possible. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."],
|
96 |
-
["I want you to act as a spoken English teacher and improver. I will speak to you in English and you will reply to me in English to practice my spoken English. I want you to strictly correct my grammar mistakes, typos, and factual errors. I want you to ask me a question in your reply. Now let's start practicing, you could ask me a question first. Remember, I want you to strictly correct my grammar mistakes, typos, and factual errors."],
|
97 |
-
[f"I want you to act like {character} from {series}. I want you to respond and answer like {character} using the tone, manner and vocabulary {character} would use. Do not write any explanations. Only answer like {character}. You must know all of the knowledge of {character}."]
|
98 |
-
]
|
99 |
)
|
100 |
|
101 |
-
|
|
|
|
|
102 |
chatbot.like(vote, None, None)
|
103 |
iface.render()
|
104 |
|
|
|
|
|
105 |
if __name__ == "__main__":
|
106 |
demo.queue(max_size=3).launch()
|
|
|
2 |
from gpt4all import GPT4All
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
|
5 |
+
title = "DiarizationLM GGUF inference on CPU"
|
6 |
|
7 |
description = """
|
8 |
+
DiarizationLM GGUF inference on CPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
"""
|
10 |
|
11 |
model_path = "models"
|
12 |
+
# model_name = "model-unsloth.Q4_K_M.gguf"
|
13 |
+
# hf_hub_download(repo_id="google/DiarizationLM-13b-Fisher-v1", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)
|
14 |
model_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf"
|
15 |
hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)
|
16 |
|
|
|
18 |
model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu")
|
19 |
print("Finish the model init process")
|
20 |
|
21 |
+
model.config["promptTemplate"] = "{0} --> "
|
22 |
model.config["systemPrompt"] = ""
|
23 |
model._is_chat_session_activated = False
|
24 |
|
25 |
max_new_tokens = 2048
|
26 |
|
27 |
+
print("Finish the model config process")
|
28 |
+
|
29 |
def generater(message, history, temperature, top_p, top_k):
|
30 |
+
prompt = model.config["promptTemplate"].format(message)
|
|
|
|
|
|
|
|
|
31 |
outputs = []
|
32 |
for token in model.generate(prompt=prompt, temp=temperature, top_k = top_k, top_p = top_p, max_tokens = max_new_tokens, streaming=True):
|
33 |
outputs.append(token)
|
34 |
yield "".join(outputs)
|
35 |
|
36 |
+
|
37 |
def vote(data: gr.LikeData):
|
38 |
if data.liked:
|
39 |
return
|
40 |
else:
|
41 |
return
|
42 |
|
43 |
+
print("Create chatbot")
|
44 |
+
chatbot = gr.Chatbot()
|
45 |
+
print("Created chatbot")
|
46 |
|
47 |
+
print("Add additional_inputs")
|
48 |
additional_inputs=[
|
49 |
gr.Slider(
|
50 |
label="temperature",
|
51 |
+
value=0.0,
|
52 |
minimum=0.0,
|
53 |
maximum=2.0,
|
54 |
step=0.05,
|
|
|
66 |
),
|
67 |
gr.Slider(
|
68 |
label="top_k",
|
69 |
+
value=50,
|
70 |
minimum=0,
|
71 |
maximum=1000,
|
72 |
step=1,
|
|
|
74 |
info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit.",
|
75 |
)
|
76 |
]
|
77 |
+
print("Added additional_inputs")
|
|
|
|
|
78 |
|
79 |
iface = gr.ChatInterface(
|
80 |
fn = generater,
|
|
|
83 |
chatbot=chatbot,
|
84 |
additional_inputs=additional_inputs,
|
85 |
examples=[
|
86 |
+
["<speaker:1> Hello, how are you doing <speaker:2> today? I am doing well."],
|
87 |
+
]
|
|
|
|
|
|
|
|
|
88 |
)
|
89 |
|
90 |
+
print("Added iface")
|
91 |
+
|
92 |
+
with gr.Blocks() as demo:
|
93 |
chatbot.like(vote, None, None)
|
94 |
iface.render()
|
95 |
|
96 |
+
print("Rendered iface")
|
97 |
+
|
98 |
if __name__ == "__main__":
|
99 |
demo.queue(max_size=3).launch()
|