Spaces:
Runtime error
Runtime error
diamantrsd
commited on
Commit
•
fd0b853
1
Parent(s):
62ca097
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import tensorflow as tf
|
3 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
4 |
import numpy as np
|
|
|
5 |
|
6 |
# Load the image classification model
|
7 |
image_classification_model = tf.keras.models.load_model("klasifikasi_pt1.h5")
|
@@ -11,13 +12,18 @@ gpt2_model_name = "diamantrsd/cerpen-generator-v3"
|
|
11 |
gpt2_model = GPT2LMHeadModel.from_pretrained(gpt2_model_name)
|
12 |
gpt2_tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name)
|
13 |
|
|
|
|
|
14 |
def classify_and_generate_text(image):
|
15 |
try:
|
16 |
# Convert Gradio Image interface output to a NumPy array
|
17 |
img_array = image.astype('float32') / 255.0
|
18 |
|
19 |
-
#
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
# Map class label to corresponding category (adjust as needed)
|
23 |
category = map_class_label_to_category(class_label)
|
@@ -29,6 +35,7 @@ def classify_and_generate_text(image):
|
|
29 |
except Exception as e:
|
30 |
return f"Error: {str(e)}"
|
31 |
|
|
|
32 |
def map_class_label_to_category(class_label):
|
33 |
# Map the class label to a category (replace with your own mapping)
|
34 |
categories = ['Blazer', 'Blouse', 'Cardigan', 'Dress', 'Jacket',
|
@@ -41,7 +48,7 @@ def generate_text_with_gpt2(product_category):
|
|
41 |
input_ids = gpt2_tokenizer.encode(prompt, return_tensors="pt")
|
42 |
|
43 |
# Adjust parameters as needed
|
44 |
-
max_length =
|
45 |
no_repeat_ngram_size = 3
|
46 |
top_k = 50
|
47 |
top_p = 0.95
|
|
|
2 |
import tensorflow as tf
|
3 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
4 |
import numpy as np
|
5 |
+
from tensorflow.image import resize
|
6 |
|
7 |
# Load the image classification model
|
8 |
image_classification_model = tf.keras.models.load_model("klasifikasi_pt1.h5")
|
|
|
12 |
gpt2_model = GPT2LMHeadModel.from_pretrained(gpt2_model_name)
|
13 |
gpt2_tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name)
|
14 |
|
15 |
+
|
16 |
+
|
17 |
def classify_and_generate_text(image):
|
18 |
try:
|
19 |
# Convert Gradio Image interface output to a NumPy array
|
20 |
img_array = image.astype('float32') / 255.0
|
21 |
|
22 |
+
# Resize the image to the expected shape (224, 224)
|
23 |
+
img_array_resized = resize(img_array, (224, 224))
|
24 |
+
|
25 |
+
# Classify the resized image using the image classification model
|
26 |
+
class_label = image_classification_model.predict(np.expand_dims(img_array_resized, axis=0))
|
27 |
|
28 |
# Map class label to corresponding category (adjust as needed)
|
29 |
category = map_class_label_to_category(class_label)
|
|
|
35 |
except Exception as e:
|
36 |
return f"Error: {str(e)}"
|
37 |
|
38 |
+
|
39 |
def map_class_label_to_category(class_label):
|
40 |
# Map the class label to a category (replace with your own mapping)
|
41 |
categories = ['Blazer', 'Blouse', 'Cardigan', 'Dress', 'Jacket',
|
|
|
48 |
input_ids = gpt2_tokenizer.encode(prompt, return_tensors="pt")
|
49 |
|
50 |
# Adjust parameters as needed
|
51 |
+
max_length = 50
|
52 |
no_repeat_ngram_size = 3
|
53 |
top_k = 50
|
54 |
top_p = 0.95
|