diabolic6045 commited on
Commit
7867487
·
verified ·
1 Parent(s): bd9f370

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -45
app.py CHANGED
@@ -1,64 +1,63 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
 
 
 
 
10
  def respond(
11
  message,
12
- history: list[tuple[str, str]],
13
  system_message,
14
  max_tokens,
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
38
 
39
- response += token
40
- yield response
 
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
+ import spaces
5
+
6
+ # Load the tokenizer and model
7
+ tokenizer = AutoTokenizer.from_pretrained("diabolic6045/open-llama-Instruct")
8
+ model = AutoModelForCausalLM.from_pretrained("diabolic6045/open-llama-Instruct")
9
+ model.eval()
10
+ if torch.cuda.is_available():
11
+ model.to('cuda')
12
+
13
+ @Spaces.GPU()
14
  def respond(
15
  message,
16
+ history,
17
  system_message,
18
  max_tokens,
19
  temperature,
20
  top_p,
21
  ):
22
+ # Build the conversation history
23
+ conversation = f"System: {system_message}\n"
24
+ for user_msg, bot_msg in history:
25
+ conversation += f"User: {user_msg}\nAssistant: {bot_msg}\n"
26
+ conversation += f"User: {message}\nAssistant:"
27
+
28
+ # Tokenize the input
29
+ inputs = tokenizer(conversation, return_tensors='pt', truncation=True, max_length=1024)
30
+ if torch.cuda.is_available():
31
+ inputs = {k: v.to('cuda') for k, v in inputs.items()}
32
+
33
+ # Generate the response
34
+ output = model.generate(
35
+ **inputs,
36
+ max_new_tokens=max_tokens,
37
+ do_sample=True,
38
  temperature=temperature,
39
  top_p=top_p,
40
+ pad_token_id=tokenizer.eos_token_id
41
+ )
42
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
43
 
44
+ # Extract the assistant's reply
45
+ response = response[len(conversation):].strip()
46
+ return response
47
 
48
+ # Create the Gradio interface with the Ocean theme
 
 
 
49
  demo = gr.ChatInterface(
50
+ fn=respond,
51
  additional_inputs=[
52
+ gr.Textbox(value="You are a friendly Chatbot.", label="System Message"),
53
+ gr.Slider(minimum=1, maximum=512, value=256, step=1, label="Max New Tokens"),
54
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="Temperature"),
55
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (Nucleus Sampling)"),
 
 
 
 
 
 
56
  ],
57
+ title="Open Llama Chatbot",
58
+ description="Chat with an AI assistant powered by the Open Llama Instruct model.",
59
+ theme=gr.themes.Ocean(),
60
  )
61
 
 
62
  if __name__ == "__main__":
63
  demo.launch()