dhruvshettty commited on
Commit
cb7becb
1 Parent(s): 5b3270a

Add gradio for hugging spaces

Browse files
Files changed (2) hide show
  1. app.py +48 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ from PIL import Image
4
+ import requests
5
+
6
+ import hopsworks
7
+ import joblib
8
+
9
+ project = hopsworks.login()
10
+ fs = project.get_feature_store()
11
+
12
+
13
+ mr = project.get_model_registry()
14
+ model = mr.get_model("titanic_modal", version=1)
15
+ model_dir = model.download()
16
+ model = joblib.load(model_dir + "/titanic_model.pkl")
17
+
18
+ # "Pclass", "Sex", "Age", "Parch"
19
+ def titanic(pclass, sex, age, parch):
20
+ input_list = []
21
+ input_list.append(pclass)
22
+ input_list.append(sex)
23
+ input_list.append(age)
24
+ input_list.append(parch)
25
+ # 'res' is a list of predictions returned as the label.
26
+ res = model.predict(np.asarray(input_list).reshape(1, -1))
27
+ # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
28
+ # the first element.
29
+ # TODO(Change URL)
30
+ flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
31
+ img = Image.open(requests.get(flower_url, stream=True).raw)
32
+ return img
33
+
34
+ demo = gr.Interface(
35
+ fn=titanic,
36
+ title="Titanic Passenger Survival Predictive Analytics",
37
+ description="Experiment to predict passenger survival on the Titanic.",
38
+ allow_flagging="never",
39
+ inputs=[
40
+ gr.inputs.Number(default=1.0, label="Pclass (1 -> 3)"),
41
+ gr.inputs.Number(default=1.0, label="Sex (0 -> 1)"),
42
+ gr.inputs.Number(default=1.0, label="Age (0 -> 100)"),
43
+ gr.inputs.Number(default=1.0, label="Parch (0 -> 2)"),
44
+ ],
45
+ outputs=gr.Image(type="pil"))
46
+
47
+ demo.launch()
48
+
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ hopsworks
2
+ joblib
3
+ scikit-learn