Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""Emotion Recognition_Fine Tuning | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1pZgt5n6943GB5oq_h43LjAYoA4yi-EST | |
""" | |
"""Our Application""" | |
import numpy as np | |
import tensorflow as tf # Apply softmax using tf.nn.softmax | |
# Load the fine-tuned model from the saved directory | |
# Load model directly | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
loaded_model = AutoModelForSequenceClassification.from_pretrained("dhruvsaxena11/emoton_model_dhruv") | |
# loaded_model = TFBertForSequenceClassification.from_pretrained("https://huggingface.co/spaces/dhruvsaxena11/Emotion_Recognition_in_Text/blob/main/tf_model.h5") | |
loaded_tokenizer=AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") | |
def predict_emotion(text): | |
text_token=loaded_tokenizer(text,padding=True,return_tensors="np") | |
outputs=loaded_model(text_token) | |
probabilities = tf.nn.softmax(outputs.logits) | |
final=probabilities.numpy() | |
labels=["sadness","joy","love","anger","fear","surprise"] | |
final=final.tolist() | |
result_dict = {k: v for k, v in zip(labels,final[0])} | |
return result_dict | |
predict_emotion("dhruv") | |
my_labels=["sadness","joy","love","anger","fear","surprise"] | |
import gradio as gr | |
inputs = gr.Textbox(lines=1, label="Input Text") | |
outputs = gr.Label(num_top_classes=6) | |
interface = gr.Interface(fn=predict_emotion, inputs=inputs, outputs=outputs,title="Emotion Recognition in Text - NLP") | |
interface.launch() |