Spaces:
Running
Running
from flask import Flask, request, jsonify, send_from_directory | |
from lyricsgenius import Genius | |
import json | |
import torch | |
import numpy as np | |
from transformers import BertTokenizer, BertForSequenceClassification | |
app = Flask(__name__) | |
mood_map = { | |
0: 'Angry', | |
1: 'Happy', | |
3: 'Sad', | |
2: 'Relaxed' | |
} | |
# Load your pre-trained model and tokenizer | |
model = BertForSequenceClassification.from_pretrained( | |
"bert-base-uncased", # Use the 12-layer BERT model, with an uncased vocab. | |
num_labels = 4, # The number of output labels. | |
output_attentions = False, # Whether the model returns attentions weights. | |
output_hidden_states = False, # Whether the model returns all hidden-states. | |
) | |
model.load_state_dict(torch.load('backend/models/bert-mood-prediction-1.pt', map_location=torch.device('cpu'))) | |
model.eval() | |
# load API Token in config file | |
with open('config.json', 'r') as config_file: | |
config = json.load(config_file) | |
def tokenize_and_format(sentences): | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) | |
# Tokenize all of the sentences and map the tokens to thier word IDs. | |
input_ids = [] | |
attention_masks = [] | |
# For every sentence... | |
for sentence in sentences: | |
# `encode_plus` will: | |
# (1) Tokenize the sentence. | |
# (2) Prepend the `[CLS]` token to the start. | |
# (3) Append the `[SEP]` token to the end. | |
# (4) Map tokens to their IDs. | |
# (5) Pad or truncate the sentence to `max_length` | |
# (6) Create attention masks for [PAD] tokens. | |
encoded_dict = tokenizer.encode_plus( | |
sentence, # Sentence to encode. | |
add_special_tokens = True, # Add '[CLS]' and '[SEP]' | |
max_length = 256, # Pad & truncate all sentences. | |
padding = 'max_length', | |
truncation = True, | |
return_attention_mask = True, # Construct attn. masks. | |
return_tensors = 'pt', # Return pytorch tensors. | |
) | |
# Add the encoded sentence to the list. | |
input_ids.append(encoded_dict['input_ids']) | |
# And its attention mask (simply differentiates padding from non-padding). | |
attention_masks.append(encoded_dict['attention_mask']) | |
return torch.cat(input_ids, dim=0), torch.cat(attention_masks, dim=0) | |
def get_prediction(iids, ams): | |
with torch.no_grad(): | |
# Forward pass, calculate logit predictions. | |
outputs = model(iids,token_type_ids=None, | |
attention_mask=ams) | |
logits = outputs.logits.detach().numpy() | |
pred_flat = np.argmax(logits, axis=1).flatten() | |
return pred_flat[0] | |
def classify_lyrics(lyrics): | |
input_ids, attention_masks = tokenize_and_format([lyrics.replace('\n', ' ')]) | |
prediction = get_prediction(input_ids, attention_masks) | |
mood = ["Angry", "Happy", "Relaxed", "Sad"][prediction] | |
return mood | |
def index(): | |
return send_from_directory('frontend', 'index.html') | |
def predict(): | |
data = request.get_json() | |
song_title = data['title'] | |
artist_name = data['artist'] | |
success, lyrics = get_lyrics(song_title, artist_name) | |
if success: | |
mood = classify_lyrics(lyrics) | |
return jsonify({'mood': mood, 'lyrics': lyrics}) | |
return jsonify({'mood': '-', 'lyrics': lyrics}) | |
def get_lyrics(song_title, artist_name): | |
token = config.get('GENIUS_TOKEN') | |
genius = Genius(token) | |
genius.timeout = 300 | |
try: | |
song = genius.search_song(song_title, artist_name) | |
if song == None: | |
return False, f"Song not found - {song_title} by {artist_name}" | |
lyrics=song.lyrics | |
if lyrics.count('-')>200: | |
return False, f"Song not found - {song_title} by {artist_name}" | |
verses=[] | |
for x in lyrics.split('Lyrics')[1][:-6].split('\n'): | |
if '[' in list(x) or len(x)==0: | |
continue | |
verses.append(x.replace("\'","'")) | |
verses[-1] = verses[-1][:-1] if verses[-1][-1].isnumeric() else verses[-1] | |
return True, '\n'.join(verses) | |
except TimeoutError: | |
return False, "TIMEOUT" | |
if __name__ == '__main__': | |
app.run(host='0.0.0.0', port=8000) | |